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ABSTRACT 

 
In this paper, we investigate recognition performances of various projection-based features applied on registered 3D 
scans of faces. Some features are data driven, such as ICA-based features or NNMF-based features. Other features are 
obtained using DFT or DCT-based schemes. We apply the feature extraction techniques to three different representations 
of registered faces, namely, 3D point clouds, 2D depth images and 3D voxel. We consider both global and local features. 
Global features are extracted from the whole face data, whereas local features are computed over the blocks partitioned 
from 2D depth images. The block-based local features are fused both at feature level and at decision level. The resulting 
feature vectors are matched using Linear Discriminant Analysis. Experiments using different combinations of 
representation types and feature vectors are conducted on the 3D-RMA dataset. 
 
Keywords: Face biometry, 3D face recognition, Independent Component Analysis, Nonnegative Matrix Factorization 
 

1. INTRODUCTION 
 
There are a number of challenges encountered with face recognition from 2D intensity images. In intensity images, faces 
acquired from the same person show high variability due to lighting conditions. Face segmentation from a cluttered 
background is another problem. Since 3D acquisition devices measure shape information, 3D face models are 
independent of lighting conditions. In addition, segmentation of 3D faces from background is relatively an easy task, for 
range images, as far as the face is within the range of the scanner. Furthermore, 3D face information can model small 
pose variations as opposed to intensity images. 
 
The shape information of 3D faces is descriptive enough to distinguish between people. This information can either be 
used alone, or can be fused with 2D intensity information to increase recognition performance. In this work, we have 
used only 3D range images for identification purposes. 
 
We can summarize the work on 3D face identification as follows: Phillips1, 2, 3 et al. proposed a 3D face recognition 
system based on curvature calculation on range data. Tanaka et al.4 utilize Extended Gaussian Image, which includes 
information of principal curvatures and their directions. Different EGIs are compared using Fisher’s spherical 
correlation. Another work based on Extended Gaussian Image can be found in the paper of Lee et al5. Gordon6, proposed 
a template-based recognition system, which again involves curvature calculation. Chua et al.7, have used point 
signatures, a free form surface representation technique. Beumier et al.8 proposed the use of face profiles for 
identification. They extracted central profile and lateral profile, and compared curvature values along these profiles. 
Chang et al.9 applied Principal Component Analysis on 3D range data, together with the intensity images. 
 
In this work we have utilized 3D face data registered by the algorithm described by Akarun et al.10, 11, 12. After 
registration, they have used the following methods for matching faces: Euclidean distance between point clouds, 
matching surface normals, principal component analysis, linear discriminant analysis and matching central and lateral 
profiles.  
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We propose three different representation schemes of 3D face information and a number of projection-based features, 
and compare their recognition performance. The representation schemes are 3D point cloud, 2D depth image and 3D 
voxel representation. Table 1, summarizes the proposed features extracted from these representations. 
 
 

Table 1:  Representation schemes and features used for 3D face recognition 
 

Representation Features 

3D Point Cloud 
 2D DFT (Discrete Fourier Transform ) 
 ICA (Independent Component Analysis) 
 NNMF (Nonnegative Matrix Factorization) 

2D Depth Image 

 Global DFT 
 Global DCT 
 Block-based DFT (Fusion at feature level) 
 Block-based DCT (Fusion at feature level) 
 Block-based DFT (Fusion at decision level) 
 Block-based DCT (Fusion at decision level) 
 ICA (Independent Component Analysis) 
 NNMF (Nonnegative Matrix Factorization) 

3D Voxel Representation  3D DFT (Discrete Fourier Transform ) 

 
 

The paper is organized as follows: Section 2 introduces the representation types of 3D face data. Section 3 describes the 
projection-based features and their extraction from different representation types. Section 4, briefly explains the distance 
measure between feature vectors. In Section 5, we give the experimental results. Finally we conclude with section 6. 

 

2. REPRESENTATION TYPES OF FACE DATA 
 

In this work, we have compared three different representation schemes and extracted the features from these 
representations. These representation types are 3D point cloud, 2D depth image and 3D voxel representation. All these 
representations are derived from registered and cropped face data. The faces are registered using the ICP algorithm 
described by Akarun et al. 10, 11 ,12 
 
2.1. 3D point cloud 
 
The 3D point cloud representation is the set of 3D coordinates, },,{ zyx  of the range data, obtained after registration. We 
have all the correspondences, defined at the registration process. Thus we can threat the ordered set of the coordinates as 
the signal describing the face. Figure 1.a shows a sample point cloud representation, while Figure 1.b, c and d show the 
x , y and z  vectors respectively, as a function of the vector index. 
 
If we have N points in the face data, we can concatenate the x , y and z  coordinates and obtain a one-dimensional 
signal of length 3N. Another way of arranging the set of coordinates is to form an Nx3 matrix, where each dimension is 
placed into one of the columns. We choose one of these two arrangements of the data, depending on the feature type we 
would like to estimate. 
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Figure 1: (a) Point cloud representation. (b, c, d) x , y and z  vectors respectively, as a function of the vector index. 

 

2.2. 2D depth image 
 
2D depth image is a commonly used representation type for face recognition. It is sometimes called as 2 ½ D image since 
it encodes 3D information. The point cloud is placed onto a regular X-Y grid, and the Z coordinates are mapped onto this 
grid to form the depth image ),( yxI  (Figure 2). This representation type is similar to intensity images by structure, 
therefore many techniques applied on intensity images can be also applied to ),( yxI . We have tested the following 
descriptors, which were previously applied to 2D intensity images, with the depth images: DFT, DCT, block-based 
versions of DFT and DCT, Independent Component Analysis (ICA) and Nonnegative Matrix Factorization (NNMF). 

               
Figure 2: 2D depth images from side and from top. 
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2.3. 3D voxel representation 
 
3D voxel representation can be regarded as a function ),,( zyxVd , filling the 3D space. To obtain this function, we 
implement the following steps: The point cloud is placed in an NxNxN voxel grid. The center of this voxel grid should 
coincide with the center of mass of the point cloud. Then we define a binary function ),,( zyxV on the voxel grid. If, in 
a particular voxel at location ),,( zyx , there does not exist any point from the face, then ),,( zyxV  at that voxel is set 
to zero. Otherwise, ),,( zyxV  gets a value of one. Figure 3 shows a sample point cloud, and the corresponding binary 

),,( zyxV displayed as a negative image. 

 
Figure 3: Point cloud and its binary voxel representation. 

 

After the 3D binary function is obtained, we apply 3D distance transform on this binary function to get ),,( zyxVd . This 
function gets a value of zero on the face surface, and the value increases as we get further away the surface. By using the 
distance transform we distribute the shape information of the surface throughout the 3D space and obtain a richer 
representation. Figure 4 gives slices from the voxel representation based on the distance transform. 
 

 
Figure 4: Slices from the voxel representation based on the distance transform. 

 
 

3. FEATURES FOR FACE RECOGNITION 
 
In Table 1, we have summarized the features to be compared with respect to their face recognition performance. These 
features can be grouped into four categories: Global DFT/DCT-based features block DFT/DCT-based features, ICA 
coefficients and NNMF-based features.  
 
3.1. Global DFT/DCT 
 
In order to compute DFT coefficients from the point cloud of N points, we first define an Nx3 matrix, P, and replace 
coordinates of each dimension to one column of P: 
 

][ 1113 NxNxNxNx ZYXP =  
 
This matrix can be regarded as a 2D function, and we apply 2D DFT on this function. We could have concatenated the 
X, Y and Z coordinates and computed the one-dimensional DFT, however, then we would lose the inherent relation 
within the coordinates of a point in the face. DFT coefficients are strongly dependent on the order of the data, and we 
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FP is a matrix of size Nx3. We take the first K coefficients of the first column of this matrix, and obtain a feature vector 
of size 2K – 1 by concatenating the real and imaginary parts of the K complex coefficients. Figure 5 shows a sample 
DFT-based feature vector of the point cloud. One should note that, most of the energy is concentrated in the band-pass 
region due to the zigzag scan of the face as can be observed from the plots of the coordinates in Figure 1. One future 
work can be investigation of the appropriate band that will give superior recognition results. 
 

 
 

Figure 5: Sample DFT-based feature vector obtained from point cloud. 
 
In order to obtain global DFT-based features from the depth image, we apply 2D-DFT to the function ),( yxI . The 
resulting DFT coefficients are of the same size with the depth image. We extract the first KxK coefficients of this matrix 
and obtain a feature vector of size 2K2 – 1, by concatenating the real and imaginary parts (Figure 6).  Likewise, we get 
the global DCT-based features; however, in this case we obtain a feature vector of size K2 since DCT coefficients are 
real. 
 

 
 

Figure 6:  Extraction of global DFT-based features from depth image. 
 
We also extract DFT-based descriptors from the voxel representation. We compute the 3D-DFT coefficients of the 
distance transform function ),,( zyxVd , and extract the first KxKxK coefficients to form the feature vector. By 
concatenating the real and imaginary parts, we obtain a feature vector of size 2K3 – 1 (Figure 7). 
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Figure 7:  Extraction of global DFT-based features from voxel representation. 
 

 
3.2. Block-based DFT/DCT 
 
In addition to the global DFT/DCT-based techniques, we also extract local features, based on the calculation of DFT 
coefficients on blocks. The depth images are partitioned into blocks of size MxM and 2D-DFT is applied separately to 
each block. Then we take the first KxK DFT coefficients to form the feature vector special to a particular block. We can 
then fuse this data either at feature level, or at decision level. 
 
Fusion at feature level is performed by concatenating the DFT coefficients coming from the blocks in a single vector. 
Figure 8 gives a sample feature vector obtained by fusion at feature level and Figure 9 explains the procedure. 
 

 
Figure 8:  Sample block-based feature vector obtained from fusion at feature level. 

 

 
 

Figure 9:  Procedure for fusion at feature level. 
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We perform fusion at decision level by using the sum rule. The depth image of an input face to be recognized is 
partitioned into blocks and each block is matched with the corresponding blocks of the depth images in the database. 
From this comparison, each face in the database gets a rank. A face in the database, thus obtains rank values as many as 
the number of blocks. When we sum up the ranks, we obtain the final rank for the face, and choose the identity of the 
face with the lowest final rank. Figure 10 summarizes this procedure. 
 

 
 

Figure 10:  Procedure for fusion at decision level. 
 

 
3.3. Independent Component Analysis (ICA) 
 
Independent component analysis is a technique to extract independent variables from a mixture of them. In this work, we 
assume that each point of a face is a mixture of variables from independent sources. Let X  be the data matrix, where 
each column includes the data from one face, then we can represent X  as follows: 
 

ASX =  
 
where A  is the mixing matrix. The columns of A  form a basis for the face database. On the other hand, the columns of 
S  are independent coefficients and they form feature vectors for the corresponding faces. We have utilized the FastICA 
algorithm described by Hyvarinen and Oja13 to extract the matrices A  and S . 
 
We extracted ICA-based features from two different representations. For the point cloud, the ),,( zyx  coordinates are 
concatenated to form a one-dimensional vector. The dimensionality of these vectors is then reduced using Principal 
Component Analysis. The data matrix X  is constructed by placing the PCA coefficients of each face to the columns. 
Figure 11 shows the first three basis faces obtained by ICA algorithm, back projected to principal components. The basis 
faces are plotted on top of the mean face. 

 
Figure 11:  First three basis faces obtained from ICA on point cloud. 
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For depth images, we follow a similar procedure. The columns of a depth image are concatenated to form a single one-
dimensional vector. Then PCA is applied to the face database and ICA-based features are derived from the PCA 
coefficients of the faces. Figure 12 (a) shows the first five basis faces obtained from ICA of the depth images, and Figure 
12 (b) illustrates the same basis functions summed with the mean face. 
 

 
(a) 

 

 
(b) 

 
Figure 12:  (a) First five basis faces obtained from ICA on depth images. (b) Basis faces plotted on top of mean face. 

 
3.4. Nonnegative Matrix Factorization (NNMF) 
 
Given a non-negative matrix X  of size NxL, nonnegative matrix factorization tries to obtain two non-negative matrices 
W  and H  such that, 
 

WHX ≈ , 
 
where W  is of size NxR and H  is of size RxL. Since we force the two matrices to be non-negative, we can only get an 
approximation of X  from the product of them. The columns of W can be regarded as basis vectors and the columns of 
H are utilized as feature vectors of the corresponding faces. W  and H  are obtained using the multiplicative update 
rules described by Lee and Seung14. The update rules that minimize: 
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Figure 13:  First five basis faces obtained from NNMF on depth images. 
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To construct the data matrix X , we either use the point cloud representations or the depth images. In either case, we 
place the data of each face into the columns of the data matrix. Figure 13 shows the first five basis faces obtained from 
NNMF of the depth images. We can observe that local features are encoded by the basis faces, which is a basic 
characterization of NNMF. Since the nonnegativity constraints only allow additive combinations, NNMF provides a 
parts-based representation.15 
 

4. MATCHING FEATURES 
 
We use linear discrimination for classifying an input feature vector. We estimate the covariance matrix of the feature 
vectors in the training set and fit a multivariate normal density to each class ( person ) using this global covariance 
matrix. When there is an input face to be recognized, the feature vector of the face is extracted and the Mahalanobis 
distances of the input feature vector to the class centers are calculated. The class giving the smallest Mahalanobis 
distance is chosen as the identity of the input face.  

 
5. EXPERIMENTAL RESULTS 

 
We have used the 3D-RMA face database16 for comparing the schemes discussed above. The 3D-RMA database contains 
face scans of 106 subjects. The total number of faces is 617 and there are 5 to 6 sessions per person. We have used 4 
sessions for training (424 face scans) and utilized the rest 193 faces for test.  We have conducted 5 experiments by 
selecting different combinations of the sessions. Table 2 gives the identification results of all the schemes, averaged over 
the 5 experiments. Table 2 also provides information about the number of features selected for each scheme. 
 
 

Table 2:  Recognition performances and number of features 
 

Representation Features Number of features Performance 

2D DFT  2x400-1 (799) 95.86 
ICA 50 99.79 3D Point Cloud 

NNMF 50 99.79 

Global DFT 2x8x8-1  (127) 98.24 

Global DCT 11x11 (121) 96.58 

Block-based DCT  
(Fusion at feature level) 

20x20 blocks (12 blocks),  
2x2x2-1 for each block (84) 98.76 

Block-based DCT  
(Fusion at feature level) 

20x20 blocks (12 blocks) 
3x3 for each block (108) 98.24 

Block-based DFT  
(Fusion at decision level) 

20x20 blocks (12 blocks),  
4x4-1 for each block (180) 98.13 

Block-based DCT  
(Fusion at decision level) 

20x20 blocks (12 blocks) 
6x6 for each block (432) 97.82 

ICA 50 96.79 

2D Depth Image 

NNMF 50 94.43 

3D Voxel 
Representation 3D DFT  2x4x4x4-1 (127) 98.34 

  
As can be observed from Table 2, ICA and NNMF-based features extracted from the point cloud representations of faces 
gave superior results with smallest number of features. They gave 100 per cent recognition performance for the three 
experiments and missed only one face for the two experiments. The missed face is plotted on top of another face of the 
same person in Figure 14. The misclassification is due to the inaccurate registration of this particular face. 
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Figure 14:  The misclassified face plotted on top of another face of the same person (misclassified by ICA and NNMF – based 
features computed on point cloud representation). 

 
 

6. CONCLUSION 
 
In this work, several feature types are proposed for the recognition of pre-registered 3D face data. The features are 
extracted from three different face representations of the face data. Experimental results show that the point cloud 
representation along with the ICA-based or NNMF-based features gave superior results, 99.8 per cent recognition 
performance. This is due to the fact that with point cloud representation we have the minimum amount of data loss; 
however, to obtain the depth images or voxel representations we quantize the 3D coordinates of the faces. On the other 
hand, ICA and NNMF have the ability to extract the essence of the information present in the large data matrices.  
 
Since all the schemes described in this work yielded recognition performances higher than 94 per cent, all of them are 
worth further improvement. Several fusion methods at both feature and decision levels can be applied for block-based 
DFT-DCT methods. The appropriate frequency bands can be investigated to obtain better performance with DFT-based 
schemes. Finally, these features should be tested on larger databases for both recognition and verification problems. 
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