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Abstract 

High-throughput, cost-effective, and portable devices can enhance the performance of point-of-care 

tests. Such devices are able to acquire images from samples at a high rate in combination with 

microfluidic chips in point-of-care applications. However, interpreting and analyzing the large 

amount of acquired data is not only a labor-intensive and time-consuming process, but also prone to 

the bias of the user and low accuracy. Integrating machine learning (ML) with the image acquisition 

capability of smartphones as well as increasing computing power could address the need for high-

throughput, accurate, and automatized detection, data processing, and quantification of results. 

Here, ML-supported diagnostic technologies are presented. These technologies include 

quantification of colorimetric tests, classification of biological samples (cells and sperms), soft 

sensors, assay type detection, and recognition of the fluid properties. Challenges regarding the 

implementation of ML methods, including the required number of data points, image acquisition 

prerequisites, and execution of data-limited experiments are also discussed.  
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1. Machine Learning and Implementation Prerequisites 

1.1. Machine learning 

Machine Learning (ML), as a subdivision of Artificial Intelligence (AI), enables computers to learn 

using example data or past experiences without being explicitly programmed. ML uses the theory of 

statistics in building mathematical models defined up to some parameters, and the learning process 

is executed by a computer program to optimize the parameters of the model based on classes of tasks 

and performance measures (Figure 1) 1-3. One way to categorize ML algorithms is based on how they 

interact with the example data or experience. Accordingly, ML algorithms can be grouped by the 

learning style as supervised, unsupervised, and reinforcement learning. In supervised learning, the 

training data can be defined as an input X and an output Y (with a known/desired label or result), 

and the task is to learn the mapping from the input to the output. Regression and classification 

problems are examples of supervised learning problems. The training process continues until the 

model achieves a desired level of accuracy on the training data. Unsupervised learning does not 

employ labeled or supervised output data. In this case, the aim is to find structures and regularities 

in the input data. Clustering, segmentation, dimensionality reduction, and association rule learning 

are examples of unsupervised learning approaches. Figure 2 depicts the commonly used ML 

architectures. Semi-supervised learning methods are also used when the input data is a mixture of 

labeled and unlabeled examples. However, reinforcement learning algorithms do not require labeled 

or unlabeled input/output pairs, but focus on optimizing an output policy – defined as a mapping 

from state actions that provides instructions in a given state with a sequence of states and actions 

with (delayed) rewards 4, 5. Although the supervised learning method is an accurate, effective, and 

versatile approach, the main drawback of this method is its reliance on prior knowledge - prepared 

labeled data by a human to train the algorithm, which is susceptible to human bias and demands 

substantial time and effort for preparation 6. In some cases, the needed training input data for 

supervised ML methods can be obtained from the output of unsupervised ML approaches 7. 

 

Figure 1. A schematic of a fully connected neural network (NN) comprised of input, output, and 

hidden layers. In conventional ML algorithms, data is first represented in terms of specific features 

that will allow for dimensionality reduction. However, based on the underlying mathematical model, 

current Deep Learning (DL) models can be trained without necessarily hand-picking such features. 

In NNs, as the number of hidden layers increases, the network becomes deeper 8. Shallow NNs (with 

few numbers of hidden layers) have limited modeling capability that is suitable for simple and well-

structured data. However, multilayer, deep algorithms possess the required complexity for 

undertaking more real-life tasks. Reproduced with permission from J. Riordon, D. Sovilj, S. Sanner, 

D. Sinton and E. W. Young, Trends Biotechnol. 37 (3), 310-324 (2019). Copyright 2018 Elsevier Ltd. 
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Figure 2. Most common ML algorithms. (A) ANNs are inspired by the NNs in the brain, structured 

in layers of interconnected nodes. The nodes in the red layer are the input features, nodes in the 

orange layers are hidden layers, and the node in the blue layer is the distinct output. Although ANNs 

can model complex relationships between in- and output features, the interpretation of how an 

algorithm reaches the output from an input is still difficult. (B) Support vector machine (SVM) is a 

supervised ML algorithm that uses the classification of data points by choosing the “separating 

hyperplane” that maximizes the distance from the 2 closest points on either side to increase the 

generalizability to unseen data. (C) Decision trees use bifurcating of the feature space to make 

classifications or predictions based on numerous input features. While regression trees are a result of 

continuous decision variables, the categorical decision variable produces classification trees. In order 

to solve the overfitting of a single tree, random forests, as an ensemble learning method, takes the 

mean predictions of the individual trees or the mode of classes. (D) Naïve Bayes calculates the most 

likely outcome (blue) as a product of the a priori chance (red) and the conditional probabilities given 

by the individual features, which is usually not definitely true, but generally is rapidly computed and 

provides viable prediction in practice. (E) A data point, with an unknown class, is compared to its K 

nearest neighbors by the K-Nearest Neighbors in order to determine its class as the most common 

class of its neighbors. For K = 1, the algorithm assigns the class of a data point to the class of the single 

closest neighbor. (F) Fuzzy C-Means, as an unsupervised learning algorithm, can cluster data points 

without having the desired output, based on their input features. Owing to the “fuzzy” aspect, these 

algorithms are flexible to classify a data point to each cluster to a certain degree relating to the 

possibility of fitting to that cluster 9. Reproduced with permission from J. T. Senders, P. C. Staples, A. 

V. Karhade, M. M. Zaki, W. B. Gormley, M. L. D. Broekman, T. R. Smith and O. Arnaout, World 

Neurosurg. 109, 476-486.e471 (2018). Copyright 2017 Elsevier Inc. 

1.2. Deep learning strategies 

DL is a subset of a broader family of ML methods based on Artificial Neural Networks (ANNs). 

As such, learning can be supervised, semi-supervised, or unsupervised. For supervised learning 

tasks, deep learning methods eliminate the need to design or select good features that are domain-

specific, by translating the data into compact intermediate representations similar to principal 

components, and derive layered structures that remove redundancy in representation. While 

supervised DL models need a large amount of labeled training data to enhance their accuracy, they 

demonstrate superior performance as well as a significant practical benefit with respect to 

conventional ML methods in several data-driven applications such as image classification, 
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segmentation, object detection, face recognition,. revealing the power of having access to more data. 

DL algorithms can be applied to unsupervised learning tasks as well. This is an important benefit 

because unlabeled data are more abundant than the labeled data. Moreover, these algorithms derive 

insights directly from the data itself, by summarizing and grouping the data, so that one can use these 

insights to make data-driven decisions. Several unsupervised DL models exist, such as Autoencoders, 

Deep Belief Nets, Hebbian Learning, Generative Adversarial Networks (GANs), and Self-organizing 

maps that do not rely on labeled training data to make decisions and determining the accuracy of the 

outcome. Despite demanding considerable time for training in traditional deep networks, either 

supervised or unsupervised, nowadays, DL owes its breakthrough to available large data storages 

and fast Graphics Processing Units (GPUs) with high computational power 8. Open-source online 

libraries are available such as TensorFlow, Caffe, Theano, Torch, Deep Learning 4j (DL4j). Although 

none of these libraries are optimal, features, plus points, and drawbacks of each library, such as 

flexibility, speed, and integrability, should be considered to choose the most appropriate fitting 

library for the desired application 10, 11. 

Common network architectures in DL include Multilayer Perceptron (MLP), Convolutional 

Neural Networks (CNNs), Recurrent Neural Networks (RNNs), autoencoders, and Generative 

Adversarial Networks (GANs). Although the true capacity of DL methods has not been revealed yet, 

each of them can address specific applications based on their architecture. For example, Deep Neural 

Networks (DNNs) have the potential to analyze multi-dimensional data and internal relationships 

among them, including but not limited to the prediction of protein structure and regulating gene 

expression. Moreover, RNNs can be used for sequential data sets where building blocks of data have 

a cyclic connection, such as Song Short-Term Memory Units (LSTMs), perceptrons, and Gated 

Recurrent Units (GRUs). Furthermore, CNNs are considered as the optimal fitting method for 

analyzing spatial data 10, 12. 

Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) are widely-used 

terms in modern data-driven research. Although these terms are closely related, it is critical to 

distinguish their differences for better use of methods belonging to each for a particular application. 

Hence, clarifying the differences between these terms worth mentioning. AI is the field of study to 

build intelligent systems, programs, and machines which can creatively solve problems. ML, a subset 

of AI, is the study of computer models and algorithms (e.g., neural networks), used by machines, to 

learn structures and patterns from observed data automatically, and then apply these learned 

patterns to make an inference on the rest of the unseen data. In classical ML, generally, three 

components are needed to learn patterns, namely datasets, features, and the algorithm. Therefore, 

selecting the appropriate features, depending on the application, plays a pivotal role in the success 

of the learning procedure, requiring domain expertise. DL, a subset of ML, is in fact a technique for 

realizing ML. For example, artificial neural networks (ANNs) are a type of DL algorithm that aims to 

imitate the way our brains make decisions. More specifically, an ANN is a web of layers, connections, 

and direction of data propagation to learn arbitrary functional mappings using data, resembling the 

functional structure of the human brain. ANNs can perform complex tasks such as decision making, 

cognition, patterns generating, and learning. In this regard, training aims to learn certain parameters 

of the ANN on a given learning task, which makes the feature selection process a part of the learning 

process. From this aspect, DL is a subfield of ML that enables an enhanced ability to find and amplify 

even the smallest patterns. DNNs were built by adding more hidden layers to ANNs, enabling the 

performance of more complex tasks by capturing nonlinear relationships. It is important to note that 

these models can be trained for both supervised and unsupervised learning tasks. Additionally, a 

combination of supervised and unsupervised ML methods for training DNNs is reported 9, 13-16. 

2. Machine Learning Applications 

In speech recognition, image processing, and complex control tasks, DL has proved to have superior 

performance compared to traditional ML methods and human perception 17, 18. Furthermore, 

biomedicine and biomedical engineering, as data-rich disciplines, suffer from complex and often ill-

understood data 19. Contemporary microscopes, for instance, can provide up to 105 images per day, 
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which is challenging to be analyzed manually. ML methods can detect particular features, cluster, 

and classify images 20. Analysis of cellular assays by ML methods has provided a unique opportunity 

for clinicians to detect, monitor, and remedy genetic perturbations 21, 22. The performance of the ML 

methods is comparable to that of common image processing methods in the case of intricate 

multidimensional analysis such as distinguishing features.  

2.1. Machine learning applications for assay quantification and classification  

Inaccurate measurement can occur in the manual interpretation of colorimetric test results. The 

integration of ML with current methods not only can address the inaccuracy issue, but also can 

amplify the test speed. Colorimetric assays have been analyzed using ML. A machine learning-based 

mobile application was developed to quantify peroxide concentration using colorimetric test strips 

with almost 90% accuracy 23. In another study, two different CNN models were used for assay type 

detection and colorimetric measurements: 8-layer deep AlexNet, consisting of series network, and 

42-layer deep Directed Acyclic Graph (DAG) network of Inception v-3 24. Both methods had 100% 

accuracy in the training set for assay type detection with less than 1000 data samples needed for 

training of the algorithm, whereas the precision of colorimetric detection was low. Although the 

Inception method required virtually 20 times more time for training compared to the AlexNet, the 

former needed less memory and computational power. More time, larger training data set, and 

higher computational power were needed for more accurate results. Support Vector Machines (SVM), 

Linear Discriminant Analysis (LDA), and ANN were used to achieve classification results for the 

detection of alcohol concentration in saliva 25. LDA could aptly perform linear classifications when 

dataset classes are sufficiently separated from each other based on standard concentration values. 

SVM demands more training time because of the crucial optimization step. Notwithstanding the 

proposed optimizations, SVM’s classification performance did not improve in comparison to LDA. 

Overall, ANN integrated with LAB color space presented the optimal performance. For spectral 

classification, Euclidean Distance (ED), Spectral Angle Mapper (SAM), SVM, Logistic Regression 

(Logi), and Multilayer Perceptron (MLP) models were employed for differentiating between 

seborrheic dermatitis and psoriasis on the scalp 26. SVM yielded higher accuracy and sensitivity over 

other models. In another study, an ML method was used for single-molecule data analysis where 

CNN and SVM had 98.1% and 91.7% accuracy on test datasets, respectively 27. A CNN-based model 

was developed with up to 19 layers to demonstrate the effect of depth on the algorithm’s accuracy 28. 

Augmenting a convolutional ConvNet depth enhances classification accuracy. 

An ML method was implemented on a smartphone platform to automatically identify pH values 
29. Images of pH strips under different orientation and illumination conditions (Figure 3) and their 

colorimetric values were used as the training set for the Least Squares-Support Vector Machine (LS-

SVM) classifier algorithms. LS-SVM had a 100% accuracy for all pH values. On the other hand, the 

SVM method yielded an inferior detection performance compared to LS-SVM, especially for 3, 6, 7, 

and 8 pH values. 
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Figure 3. Colorimetric measurements of assays. (A) Influence of different illumination (sunlight - 

fluorescence – halogen light) and orientation on the obtained image of a strip with a pH of 12. (B) 

Different orientations proposed for pH strips to increase the variety of learning dataset for the 

algorithm 29. Reproduced with permission from A. Y. Mutlu, V. Kılıç, G. K. Özdemir, A. Bayram, N. 

Horzum and M. E. Solmaz, Analyst 142 (13), 2434-2441 (2017). Copyright 2017 the Royal Society of 

Chemistry. 

In another study, different classifiers were employed to analyze images to detect tuberculosis 

(TB) 30. When 75% of the dataset was used for training and 25% for evaluating, the Bagged Tree 

classifier had the most optimal accuracy by 94.1% over other methods such as the Fine K Nearest 

Neighbor (KNN), with 70.6%, and the Cubic SVM, with 76.5%. However, when all the dataset was 

used as the training data, the optimal accuracy results can be changed as follows: the Bagged Trees 

97.2%, the Fine KNN 94.4%, and the Cubic SVM 88.7%. 

A mobile phone-based colorimetric test was developed by combining DL with a wax-printed 

paper-based multiplexed immunoassay to detect Lyme disease 31. Training the algorithm with 48 

positive and 52 negative samples, 90% sensitivity, 95% area under the curve, and 87% specificity was 

reported (Figure 4). 

 

Figure 4. Sequential steps of the devised method to detect Lyme disease using a mobile phone to capture 

the image, and employing a DL approach to analyze the data to determine the test result 31. Reproduced 

with permission from H.-A. Joung, Z. S. Ballard, J. Wu, D. K. Tseng, H. Teshome, L. Zhang, E. J. Horn, P. 
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M. Arnaboldi, R. J. Dattwyler, O. B. Garner, D. Di Carlo and A. Ozcan, ACS Nano 14 (1), 229-240 (2020). 

Copyright 2019 American Chemical Society. 

2.2. Microfluidic devices and machine learning 

Microfluidics can be used as a quick, low cost, and easy to use technique for the determination of 

biomarkers in clinical samples 32-42. With the assistance of ML, these devices become more functional 

and accurate. ML-enabled microfluidic devices are broadly used in measuring fluidic properties in 

microfluidic devices 43, glucose assays 44, soft sensors 45, flow cytometry 46, and cytopathology 47-49. 

NNs have been used to quantify physical properties in microfluidics. For example, the magnitude of 

the blend droplets was estimated 50, in which an ML algorithm was developed to predict emulsion 

stability in a microfluidic channel by learning the shape descriptor of the emulsion 51. Briefly, 

microchannels were fabricated using Polydimethylsiloxane (PDMS) and stereolithography. By 

following the convolutional autoencoder architecture 52, an ML model was designed. This algorithm 

has a low-dimensional (8-dimensional) code to explain droplet patterns within a thick coating and 

anticipate if the particle becomes unsteady or breaks down from its exact shape. 

A DNN was developed to calculate fluidic characteristics in a microfluidic setup learning from 

the surge of droplets in a microfluidic channel 43. On-chip motion can be estimated using the Coriolis 

method 53, which detects the mechanical fluctuations based on thermal measurements and flow rate 
54. A thermometer and heater were used to evaluate the changes in liquid temperature. This approach 

required a visually translucent window and an outer camera as opposed to more complex methods 

described in other studies. In the microfluidic model, silicon oil and water-Isopropyl Alcohol 

Solutions (IPA) solutions were used as inputs (Figure 5). Images of the droplets produced at the 

crossing of the water-IPA solution were recorded with a broad-field magnifier. Images of droplets 

for an IPA at 5.5% water concentration for different flow rates are illustrated in figure 5c. A NN was 

equipped with 6000 droplet pictures (400 pictures for every flow measurement), with flow velocity 

distributing from (0.1 to 1.5) ml per hour with increments of 0.1 ml per hour, while the flow velocity 

of silicon oil was maintained at 2 ml per hour. 2900 new pictures were evaluated on the trained 

network (100 pictures for every flow rate distributing from 0.1 to 1.5 ml per hour with increments of 

0.05 ml per hour). Figure 5d shows the results of DNN training for flow rate determination for all 

concentration values. The mean deviation of the anticipation was computed by taking the average 

value of the absolute relative variance between the anticipated value and the actual value. The 

average error for the trained model was 2.9% and 5.7% for new flow rates. As the flow regime 

transited based on the flow velocity, the DNN faced difficulty to anticipate new flow rates, with new 

flow regimes, which were not included in the training dataset. 

Another DNN was equipped with 3600 pictures from each of the four-concentration 

distributing, from 4% to 7% with increments of 1%. The diagram in figure 5e contrasts the expected 

values with the ground facts. The average errors for the trained samples were 1.5% and 9.3% for new 

samples. Figure 5e shows that the DNN correctly predicted the concentrations of 4.5% and 6.5% but 

was unable to accurately predict the concentration of 5.5%. This inaccuracy suggested that the shape 

changes from 5.0% to 6.0% were non-monotonic. This non-monotonic manner was the output of a 

shift in the droplet flow shape between various conditions caused by a change in IPA concentration 

in the solution. 
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Figure 5. DNN applied to a microfluidic system. (A) Diagram of the microfluidic conduit. (B) The 2-stage 

structure of the creation of droplets in a microfluidic system carries data on flow characteristics. 

Algorithms were utilized to retrieve the characteristics while the actual method remains unchanged. (C) 

Photos of particle development at various flow speeds of the dissipated stage. (D) Flow velocity evaluation; 

estimated outcomes were compared to the actual value for 5.5% water-IPA concentration. Red 

dots indicate the flow velocity for which the system was trained, and the new flow velocities are shown in 

blue dots. (E) Comparison between anticipated concentration by DNN and actual data 43. P. Hadikhani, N. 

Borhani, S. M. H. Hashemi and D. Psaltis, Sci. Rep. 9 (1), 1-7 (2019); licensed under a Creative Commons 

Attribution 4.0 International (CC BY 4.0) License. 

Soft sensors can benefit from being integrated with ML methods. The soft sensor is a generic 

term for software, which processes multiple measurements simultaneously. Soft sensors are used to 

forecast response variables that are challenging to quantify. Soft sensors have been formulated from 

carbon particles55, 56, silver nanowires 57, 58, ambient-temperature molten metals 59, 60, and ion liquids 61, 

62. The two common disadvantages of soft sensors correlated to conventional sensors are the 

hysteresis and deviation in response, mostly shown by microfluidic soft sensors 60, 63. Another 

drawback is the placement of signal wires when there is limited space compared to the number of 

sensors. A hierarchical recurrent sensing network model, a type of RNNs, was developed to solve the 

above issues in soft sensors. Two different pressure sensors (a) a straight channel with three distinct 

cross-section areas in three different parts, (b) a similar-sized channel with distinct curved shapes 

(square, triangular, and circular) were manufactured with one microchannel poured with liquid 

material (eutectic gallium-indium or EGaIn) 45. 2070 training data and 375 test datasets were prepared 

for each sensor by varying the pressure and pressing speed in different locations. The test accuracy 

of these devices was measured in different places for different values of pressure. The overall 

Normalized Root Means Squared Error (NRMSE) was 6.64%, and  localization accuracy was 81.87% 

for straight channel. The NRMSE of similar-sized channel model was 5.81%, and the accuracy of 

localization was 85.42% overall of the test cases. It was reported that the implementation of RNN 

decreased the number of needed signal wires in a soft sensor array and simplified the calibration 

process. 

Another study investigated the potential of hierarchical feature extraction methods for the 

automatic design of a sequence of pillars to obtain user-defined fluid deformation in microfluidic 
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devices. The accuracy and needed time were compared for the deep convolutional neural network 

(CNN), pre-trained deep neural network (DNN), and genetic algorithm (GA). The proposed DNN 

was comprised of 1000 hidden units in 5 hidden layers, while the CNN consisted of 2 convolutional 

layers, 2 pooling layers, and one fully connected layer with 500 hidden units. 150,000 samples were 

used to train the NNs, and 20,000 additional samples were used for validation. Comparing the run 

time and pixel match rate (PMR) of the GA and deep learning methods, although the PMR of GA had 

a higher performance than DL, the runtime of GA can be 600 times more than the needed time for DL 
64. 

Regardless of the selected manufacturing method, a prevalent problem of microfluidic devices, 

in the production stage, is the inability of the fabrication approach to reproduce exactly the same 

dimensions, resulting in the inconsistency of the flow rate and the obtained results. Deep Q-network 

(DQN) and model-free episodic controllers (MFEC), as two reinforcement learning methods, are used 

to maintain stable flow conditions over an extended time period, with minimum need for manual 

intervention, to ensure consistent result acquisition. This was obtained by observing the microfluidic 

chip by a camera and analyzing the data by image processing. The performance of the DQN 

algorithm was comparable to that of human testers after 37h of training of the DQN with more than 

200,000 image frames. More training increased the performance of DQN over human tester. On the 

other hand, MFEC reached its peak performance in 2 h of training with 11,000 image frames, which 

was considerably fast compared to DQN that needed 24 hours (130,000 image frames) to yield the 

analogous accuracy level. However, the maximum performance of MFC could not surpass the 

performance of the human tester 65. 

2.3. Biomedical applications of machine learning 

Biology has great potential to be integrated with ML approaches to address unmet needs. Sorting 

sperms by ML, for instance, is one of these applications 66. Assessing the morphology, motility, and 

concentration of sperms in semen can provide important information for fertility clinicians. Although 

the point of care approaches for sperm motility and concentration measurements are available, 

evaluation of sperm morphology in point of need has not been developed to its potential, due to the 

time-consuming process 67. In vitro fertilization (IVF) is a commonly used method which relies on the 

selection of sperms with suitable morphology. Since sperms start to die after being out of the body 

for a while, the selection process should be done as fast as possible. Utilizing differential interference 

contrast microscopy by clinicians, as one of the promising selection methods, not only is a time-

consuming process, but it also is prone to be affected by clinicians' bias and inexperience. However, 

despite being laborious and bias-prone, manual sperm morphology assessment by human clinicians 

is still the most prevalent in-use methodology since other proposed alternative approaches are 

expensive as well as inaccurate. ML approaches can significantly amplify both accuracy and 

rapidness. A recent study reported 88.67% area under the accuracy recall curve and 90% accuracy 

using the SVM classifier to select desired sperms automatically 68. Since enough number of all existing 

types of sperms may be unavailable, sperm head images were categorized by using transfer learning 

on a Visual Geometry Group (VGG16) CNN 69. Firstly, the model was trained by the ImageNet 

database, a user-annotated database comprised of images of typical objects and animals. 

Subsequently, sperm head images were used to train the classifier. Overall, the accuracy of 94.1% and 

62% were reported for the Human Sperm Head Morphology dataset (HuSHeM) and partial-

agreement laboratory for Scientific Image Analysis Gold-standard for Morphological Sperm Analysis 

(SCIAN) datasets, respectively, which outperformed conventional ML methods such as Centered 

Hyperellipsoidal Support Vector Machine (CE-SVM) 67. A transfer learning method was applied on 

a deep CNN in which 80% of 3820 sperm images were used to train the algorithm, while the 

developed algorithm was validated by the remaining portion of the data set. The trained algorithm 

was able to correctly identify 371 sperm images out of 415 images, yielding an accuracy of 89% based 

on annotations obtained from clinicians 70. 

Another application of ML methods in the realm of biology is in cell detection. Four major types 

of white blood cells were detected using the Residual Network (ResNet) V1 50 DL algorithm with 
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100% accuracy 71. In another study, a weakly supervised DL architecture outperformed VGG and 

Microtubule Networks (MT) for detecting and counting dead cells in microscopy images 72. ML was 

employed for single-molecule data analysis, where CNN and SVM had 98.1% and 91.7% accuracy on 

test datasets, respectively 27. Detecting diseases and disorders is another application of ML in biology. 

Random Forecast (RF) ML has been utilized for the classification of the most common 

neurodevelopmental disorder Attention-deficit and Hyperactivity Disorder (ADHD) with 82% 

accuracy, 75% sensitivity, and 86% specificity 73. 91.6% accuracy was achieved in analyzing electronic 

medical data for detecting children of severe hand, foot, and mouth disease (HFMD) using ML 74. 

Furthermore, a method was developed for cytopathological photo review, employing ML in 

microfluidic devices 47. This study explored the validity of using DL algorithms for cytopathological 

research by classifying three major unlabeled, unstained cell lines of leukemia (MOLT, HL60, and 

K562). By using restricted Boltzmann machines, a deep belief network 75 was developed, in which the 

scales were adjusted to discover a common abstract depiction of the data framework without 

considering the names. Moreover, a microfluidic cytometer was created based on contact-imaging 

with ML for high-performance development by a single frame 46. In this work, a high-performance 

single-frame growing with in-line ML was developed for cell interact pictures. A similar model of 

microfluidic cytometer-based touch imagery was demonstrated for cell recognition and calculation. 

A serious challenge of diagnosing AIDS-related cancers (e.g., diffuse large B cell lymphoma (DLBCL)) 

is the lack of comprehensive tests and classification, particularly in deprived regions. An automated, 

portable, robust, and cost-effective digital cellular analysis test was developed, in which a DNN 

processed the data to provide quantitative result readouts, including cell size, malignant cell number, 

and differentiation between high/low-grade subtypes. The device could be used while connected to 

the Internet or based on an installed Raspberry Pi processor in remote areas. The proposed DNN was 

trained by 3447 training data and validated by 1732 samples. Using the proposed DL technique, the 

needed time for computation reduced 5 times compared to image reconstruction of the whole field 

of view. The proposed device was reported to have 91% sensitivity, 100% specificity, and 95% 

accuracy for diagnosing lymphoma76. 

Employing ML approaches in paper-based devices has become more ubiquitous recently. Paper 

is a useful medium for microfluidic assays as it is lightweight, low cost, compatible with biological 

objects, easy to transport and store. Other practical materials such as yarn and fabric have been also 

employed in creating microfluidic devices 77-83. Yarn and thread are promising resources for 

microfluidic devices due to their biochemical properties. These devices include a microfluidic 

paper/yarn-based analytical device (μTPAD) and 3D Microfluidic Paper-based Analytical Devices 

(μPAD) 44. These devices exhibited the viability of using fitting and classification algorithms for an 

ANN to derive glucose concentration based on dye data from four channels of Cyan Magenta Yellow 

Black (CMYK). To train and test the ANN, mean 16-bit color values were obtained in a device from 

all the four-color paths in the CMYK chart. The data utilized to prepare the ANN was comprised of 

160 data points for μPAD, and 54 data points for μTPAD, where two different methods (fitting and 

classification) were performed. Figure 6a reflects the efficiency of ANNs applied to the fitting 

problem. The classification accuracy of 91.2% and 94.4% were reported for μPAD analysis sites and 

the μTPAD, respectively. 
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Figure 6. ML in paper-based microfluidics. (A) Generated standardization lines from regression data 

utilizing the neural network fitting model. Every dot on the graph shows a forecast anticipated by the 

model. The x-axis marked as "Target" signifies the glucose concentration at the experiment site, while the 

y-line classified as ‘Output’ implies the glucose concentration prediction made by the model. (B) An error 

matrix classification model. This figure displays a 3×3 error matrix, where the rows indicate the three 

"output" groups where the assessment site may be held by the ANN, and the columns signify the respective 

true or "Target" group of the assessment site. For instance, the "53" in the second row and second column 

matrix cell shows that 53 assessment sites affiliated to group 2, and they were properly classified as group 

2 sites by the ANN classifier. Also, the "5" in the first row and second column cell in the matrix shows that 

three assessment sites affiliated to group 2 were misplaced as group 1 sites by the ANN classifier 44. 

Reproduced with permission from W. Lee, A. Gonzalez, P. Arguelles, R. Guevara, M. J. Gonzalez‐Guerrero 

and F. A. Gomez, Electrophoresis 39 (12), 1443-1451 (2018). Copyright 2018 WILEY‐VCH Verlag GmbH & 

Co. KGaA, Weinheim. 

Computation holds great potential in diagnostics, where the computational sensing methods 

will advance point-of-care (POC) analysis. To evaluate the signs generated on paper-based substrates, 

ML algorithms can be used in POC sensors. A Paper-based Vertical Flow test (VFA) was created 

using ML for cheap and rapid high-sensitivity C-reactive protein (hsCRP) testing 84. First, a 

multiplexed VFA platform was developed using paper sheets piled inside a 3D-printed frame, 

designed to sustain a uniform vertical serum flow through a sensing membrane of 2D nitrocellulose 

(NC) (Figure 7a). The ultimate CRP quantification model was developed using 209 training set and 

the best spot framework. Next, blind evaluation utilizing the configured hsCRP VFA framework and 

qualified model was performed with 57 test samples. The samples were analyzed using the pixel 

information that had 28 spots and 5 conditions inside the computationally defined subset. The model 

accomplished 100% accuracy for classification by adequately classifyng 6 specimens as acute, and the 

remaining 51 specimens as in the hsCRP range. A comparison of the VFA quantification accuracy 

with the gold standard values is shown in figure 7c, d, demonstrating acceptable agreement in the 

term of quantification precision. The R2 value of the system was 0.95, with a linear best-fit line slope 

at 0.98 and intercepted at 0.074. 
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Figure 7. Application of ML methods in vertical flow assays. (A) The cross-sectional view of the VFA 

cassette. (B) The screening process for the point. Plotting the cost function throughout the sensing element 

generates a heat-map (left), and the ideal subgroup of points (right) is then chosen for the most appropriate 

quantification effectiveness of the deep red indicator. (C) Blindly tested clinical specimens, where the left 

y-axis indicates the VFA predicted the concentration of CRP and the right y-axis indicates the confidence 

score for the specimens categorized as acute, and the x-axis presents the ground truth concentration. The 

actual match (y=x) is represented by a dotted line, and the linear fit is indicated by the red line. Reagent 

batch ID and fabrication batch ID are indicated by the marker color and patterns. (D) Blind testing results 

for moderate and low CVD risk areas, where the dotted line indicates the clinical cutoffs 84. Z. S. Ballard, 

H.-A. Joung, A. Goncharov, J. Liang, K. Nugroho, D. Di Carlo, O. B. Garner and A. Ozcan, NPJ digital 

medicine 3 (1), 1-8 (2020), licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) 

License. 

3. Implementation challenge 

3.1. I. Required number of samples for the desired accuracy 

After training an algorithm, if the trained model could accurately perform prediction on the training 

dataset as well as an independent dataset, the training can be deemed complete 7. Measuring the 

accuracy of a learner algorithm plays a pivotal role in designating a robust method. One of the 

common means to attain this goal is to measure the ratio of erroneously classified samples to the total 

number of samples 5. Other ratios such as “standard false positive” and “false negative” rates can be 

applied to define the meticulousness of an algorithm 85. However, in some cases, a common problem 

with training and testing of the algorithms happens when the training error is subtle, but conversely, 

the test error is considerable 86. This indicates that the algorithm fails to generalize the structure in 

independent data properly (overfitting). On the other end of the continuum, when an algorithm fails 

to predict training data after learning, under-fitting occurs 7, 87. These two problems are the major 

issues with the unsatisfactory performance of algorithms. The underlying cause of overfitting is the 

complexity of the model. This phenomenon occurs when the number of adjustable parameters is 

proportionally more than the number of training samples. In contrast, under-fitting stems from the 

simplicity of the algorithm. In this regard, the former can be addressed by augmenting the number 

of training samples or moderating parameters, where the latter can be solved by increasing the 

complexity of the model 88. 
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Taking these problems into account, finding the minimum number of required data to train a 

precise algorithm is of great importance 89. However, there is no rule of thumb for determining this 

number since it is highly dependent on the method, number of classes, and quality of data,. 90. In 

general, the more the number of features in data is, the more training data is needed 91. Besides, 

generative methods require fewer training samples in comparison to discriminative models 92. To 

elucidate this approach, an experiment was carried out on tumor cells 48. Figure 8 shows that 

increasing the number of training samples improves the model performance by decreasing the test 

error, and amplifies the training error, because the algorithm fails to fit several data points. Hence, 

the sample amount is a trade-off between test error and training error. For instance, in this specific 

test, 850 training samples could be enough since more samples cannot converge two curves any 

further. 

 

 

Figure 8. The deviation between test and train error diminishes up to N≈850. Thereafter, augmenting 

training samples would not decrease this discrepancy considerably. Hence, the minimum required data for 

this experiment is N≈850 48. C. L. Chen, A. Mahjoubfar, L.-C. Tai, I. K. Blaby, A. Huang, K. R. Niazi and B. 

Jalali, Sci. Rep. 6, 21471 (2016), licensed under a Creative Commons Attribution 4.0 International (CC BY 

4.0) License. 

3.2. II. Dealing with data-limited cases 

DL demands a substantial amount of data for superior accuracy. Clinical medicine, however, is  

resource-restricted since a limited number of patients and clinical records are present in the time and 

place of training 19. To address this, Electronic Health Record (EHR) data can be a promising solution 
93. EHR is a digital record of patients’ health information, including personal statistics, laboratory test 

results, medical history, Magnetic Resonance Imaging (MRI), and Computerized Tomography (CT) 

scan images, available for authorized users worldwide 94, 95. Another effective method of dealing with 

data-limited experiments is augmenting available data. Rich data such as 3D images can be divided 

into lower dimension images to train algorithms. For instance, training a CNN by 2.5D data for CT 

scan image detection yields almost analogous precision performance with 3D trained CNN 96. 

Furthermore, taking images of available data under different illumination conditions with various 

orientations can increase the training data set (Figure 3b) 29. However, in some cases neither dividing 

into lower dimensions nor different illumination and orientation is feasible. In such cases, transfer 

learning can assist experts to overcome this problem. Transfer learning means training an algorithm 

on a set of data and taking the advantages of the algorithm on entirely different data 24. Transfer 

learning was applied in human sperm classification with an accuracy of 94.1% for the HuSHeM 

dataset 69. However, the accuracy of a CNN trained on a limited number of labeled MRI can 

outperform a classifier trained on a large dataset from a dissimilar domain 97. 

3.3. III. Image acquisition 

The detection of color could be difficult since a diversity of factors could affect the interpretation of 

data, including the illumination intensity and its direction, ambient lighting conditions, as well as the 
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employed camera’s features. Mercury and xenon lights, which are widely in use, provide a varying 

lighting intensity based on their lifetime and heating-up period. Nevertheless, contemporary Light-

emitting Diodes (LEDs) and Surface Mount Device (SMDs) provide stable light intensity, applicable 

to ML approaches 5. For early experiments conducted in colorimetric tests, mostly, flatbed scanners 

were used to capture images from samples 98. Although this approach can eradicate the problem with 

varying illumination conditions and the constant distance between the sample and camera 99, the 

major downsides with these scanners not only were their inaccessibility, but they also might not be 

utilized in experiments with liquid or wet samples 100. In contrast, smartphone-based experiments 

have surmounted this problem by providing portable cameras without the need for the direct contact 

of the camera and the sample during the image taking process. Another issue with wet or liquid 

samples is the reflection of light from their surface, which can be misleading data for an algorithm 

trained on dry samples for the same experiment, namely pH detection 101. Furthermore, the shape 

and properties of the sample container should not be neglected in experiments with liquid samples 

since the shadow of edges and transparency of the container can affect the color of the sample taken 

with smartphones 24. 

RAW images, by which specialists chiefly mean “unprocessed” images, comprise of original 

information outcomes from a camera’s lens, in 10-14 bits of color information, before in-camera 

processes 102. Whereas, Joint Photographic Experts Group (JPEG) images are compressed, small size 

files with only 8 bits of color depth 103. This compression triggers concern in experts regarding the 

suitability of JPEG images in image processing 104. In spite of this concern, using LS-SVM as an ML 

classifier, JPEG format had an analogous performance with the RAW format for peroxide content 

quantification 29. 

4. Future Prospects 

Further applications of ML are conceivable in a large scope from Lab on a chip (LoC) to Structural 

Health Monitoring (SHM) 105, i.e. airplane, bridges, skyscrapers health monitoring by deciphering 

data from several sensors on them 106. Most of the experiments employ ML and DL for post-

experiment data analysis. ML may not play a decisive role in the design and control of the 

experiment. However, learning from previous experiments, AI can determine the optimized 

proportion of reagents and samples in microfluidic tests, as well as the best time for injecting them 8. 

Furthermore, DL algorithms can assess the design aspect of novel proposed devices to determine the 

most efficient design by taking into account experimental material, the required time for the 

fabrication of each design, price, and efficacy of reactions. 

Another field which can benefit from ML and DL is organ-on-a-chip (OOC) systems. Artificial 

tissues could to be mimicked in laboratories for a diversity of applications such as the replacement 

of organs in the body, regulatory drug testing, and experimental disease monitoring 107, 108. Culturing, 

maintaining, and monitoring on-chip tissues will generate a substantial number of images and videos 

of living cells, tissues, organs in the in-vitro environment, and the effect of drugs on them 109. Such 

big data needs to be analyzed from spatial and histological, aspects to evaluate expected features of 

OOC systems. Hence, the design, control, and self-regulation of OOC systems is a feasible future 

prospect for DL. 

Paper-based microfluidic tests, as a low cost and accessible method, will be in use more 

ubiquitously in the future 110. By distributing these devices globally, collecting data, and analyzing 

them using DL will bring an unprecedented opportunity to detect symptoms of illnesses 111, 

malnourishment in certain societies or regions, and predicting outbreaks of diseases. For instance, 

Zika Virus could be detected by a paper-based sensor 112. Overall, monitoring the health status of a 

large portion of the world population by POC devices and DL can facilitate control and overcome 

pandemics. 

Microorganisms affect planet earth and humanity with an unneglectable role in climate change, 

oxygen supply, and carbon cycles 113. Thus, monitoring their trends and the influence of global 

warming on them require advanced environmental microfluidic monitoring technologies for testing 

their concentration in soil and oceans114. The copious amount of information gathered by LoC devices 
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may require DL to collect, classify, quantify, and analyze the data for later uses in making a decision 

regarding how to control climate change. 

5. Discussions and Conclusions 

To choose the best method, the available data should be considered. If enough number of labeled 

input and output data is available, then the supervised method can be the best choice. Otherwise, if 

the number of annotated input data is more than labeled output data, then semi-supervised methods 

can be chosen. Finally, if output data is not labeled at all, the unsupervised method should be 

considered. Since ML uses NNs that resemble the human neural system, algorithms may learn more 

efficaciously from a certain format of representing data compared to other formats. Featurization, 

which is the process of converting raw data into an appropriate input format, has recently attracted 

attention 87. According to the algorithms’ ability to handle different types of data, each of them has 

its own applications. For instance, for cell biology applications, SVM can be intriguing 115, 116. 

Moreover, linear discriminant analysis, generative approaches in general, attracted more attention 

for classifying the phenotypes of the actin cytoskeleton in Drosophila melanogaster cells 117. The 

integration of existing DL algorithms allows the production of more capable architectures. 

Combining CNNs and RNNs, for example, has resulted in an algorithm that can be used for 

captioning images, summarizing videos, and image-question answering 10. Therefore, combinations 

that are capable of executing more complicated tasks should be developed.  

Regarding biomedical applications, for instance, disease evolution and symptoms of the known 

diseases can vary from person to person. Thus, even if an algorithm, trained by data from a restricted 

database, has an acceptable performance currently, there is no guarantee that it can adequately and 

reliably perform its task under new circumstances. Moreover, the issue of limited available samples 

can be solved in some colorimetric applications. Nevertheless, some biomedical fields have a limited 

number of ill people that are willing to participate in clinical research 90. Hence, a global EHR platform 

can be created for gathering all available samples globally. 

The main challenge in ML is the “black-box” issue 90. ML algorithms are comprised of numerous 

hidden layers. Although these algorithms are developed by humans, the exact procedure of 

analyzing input data and the underlying logical reason behind the decision of ML inside these hidden 

layers are not fully understood. In some applications, such as annotating images and voice 

recognition, the user can instantly verify the outcome of the ML algorithm to ensure the quality as 

well as the accuracy of the result. However, the black-box issue brought about some predicaments in 

multi-dimensional applications. These applications inextricably associate patients’ health in which 

the ML method is supposed to determine the dosage of each constituting component of the drug 

based on the symptoms of the patient as the input data. Since it is not transparent how the ML 

algorithm reaches the final arrangement of drug elements, it causes a dilemma for both experts and 

patients: whether an expert should trust the suggested drug as the end product; and the patient 

would be willing to use prescriptions of ML architectures 4. Different ML methods may yield different 

results for the same input data, augmenting this uncertainty 86, 118. 
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