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Abstract: Electrochemical CO2 reduction towards value-added chemical feedstocks has been

extensively studied in recent years to resolve the energy and environmental problems. The practical

application of electrochemical CO2 reduction technology requires a cost-effective, highly efficient,

and robust catalyst. To date, vigorous research have been carried out to increase the proficiency of

electrocatalysts. In recent years, two-dimensional (2D) graphene and transition metal chalcogenides

(TMCs) have displayed excellent activity towards CO2 reduction. This review focuses on the recent

progress of 2D graphene and TMCs for selective electrochemical CO2 reduction into CO.

Keywords: electrochemical CO2 reduction; 2D nanostructures; MoS2; graphene; WSe2

1. Introduction

The increasing utilization of fossil fuels leads to huge amounts of CO2 emissions which causes

inevitable damage to the planet’s ecosystem [1–5]. One possible way to counter this is to capture

and convert CO2 to industrially important organic compounds [6–10]. To date, several strategies

have been employed for the reduction of CO2; for example, chemical [11], thermochemical [12,13],

photocatalytic [14–21], electrocatalytic [22–24], biological [25], and inorganic transformation [26].

However, among those, a great deal of research has focused on electrochemical CO2 reduction

technology aimed towards large scale applications due to its environmental compatibility and

cost-effectiveness [27–29].

However, the low reactivity of CO2 requires high energy input for its activation [30–34]. CO2

can be reduced to various useful products by employing suitable cell potential in combination with

appropriate catalysts (as shown in Table 1 (Equations (1)–(7)) [35,36]. For example, CO2 reduction to C1

products such as CO is thermodynamically more favorable because it requires only two electrons and

two protons for the activation, and such C1 products are useful as building blocks for the production

of higher hydrocarbons [37]. In contrast, long-chain hydrocarbons are industrially significant but CO2

reduction to higher hydrocarbons is a complex process, since C–C bond formation demands high

energy input [38]. Hence, rather than CO2 reduction to higher hydrocarbons, the product selectivity

and efficiency are crucial factors to be addressed.
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Table 1. The standard redox potentials for the main products of CO2 reduction in aqueous solution.

Half−Electrochemical
Thermodynamic Reactions

Product E◦ Redox Equation

CO2 + e− → CO2
• CO2 anion radical −1.90 V (1)

CO2 + 2H+ + 2e− → HCOOH Formic acid −0.61 V (2)
CO2 + 2H+ + 2e− → CO + H2O Carbon monoxide −0.53 V (3)

CO2 + 4H+ + 4e− → HCHO + H2O Formaldehyde −0.48 V (4)
CO2 + 6H+ + 6e− → CH3OH + H2O Methanol −0.38 V (5)

CO2 + 8H+ + 8e− → CH4 + 2H2O Methane −0.24 V (6)
2CO2 + 12H+ + 12e− → C2H4 + 4H2O Ethylene −0.41 V (7)

However, developing a low cost, highly efficient, and stable catalyst remains an obstacle to

be overcome. To date a number of catalysts including metals [39], alloys [40], metal oxides [41,42],

metal complexes [43], carbides [44,45], and metal-organic frameworks [46–48] have been studied for

electrocatalytic CO2 reduction. Of these, transition metal-based catalysts (e.g., Au, Pt, Ni, and Ag)

displayed notable activity, but their scarcity in nature and high-cost limit them from large-scale

employment [49]. Metal oxides, namely, TiO2, RuO2, and IrO2, have been widely investigated [50–52],

but they also possess notable disadvantages—low efficiency, high cost, poor stability, and low

current exchange density. Recently 2D materials, in particular, graphene derivatives and transition

metal chalcogenides (TMCs), have emerged as active and inexpensive alternatives to traditional

electrocatalysts [52]. They possess unique physicochemical properties and their large surface areas

facilitate the redox reaction process to boost the catalytic activity [53,54]. Moreover, exposed active

sites of 2D nanostructures are favorable for interfacial charge transfer [55]. Enhancement in mass

transport and electron conductivity of 2D electrocatalysts can be achieved by co-catalyst doping [56].

For instance, doping of Nb into MoS2 increases the overall catalytic performance at the minimal

potential of 50–150 mV [57]. Therefore, all these collective advantages of 2D nanostructures make them

suitable for electrochemical CO2 reduction.

This short review will describe the recent progress and advances in emerging 2D materials in

electrochemical CO2 reduction towards CO production. We will be discussing the fundamentals and

pathways of electrochemical CO2 reduction. Various advanced synthesis methodologies of 2D catalysts

and the effect of metal/and non-metal doping on catalytic activity will also be discussed along with the

theoretical studies.

2. Fundamentals of Electrochemical CO2 Reduction

CO2 is a linear molecule and a large input of energy is needed to break the carbon and oxygen

bonding (i.e., C=O) [58,59]. H2O reduction to H2 and 1
2 O2 demands 237.2 kJ mol−1 of energy under

standard conditions. Whereas, CO2 reduction to hydrocarbon fuels CH4 and CH3OH requires

much higher free energy towards positive change, equivalent to 818.3 kJ mol−1 and 702 kJ mol−1,

respectively [59]. Therefore, CO2 reduction is an uphill reaction and considered as a grand challenge [60].

The electrochemical cell used for CO2 reduction reaction consists of a cathode, an anode, and an

ion-exchange membrane placed in-between them, as demonstrated in Figure 1. The process of

electrochemical CO2 reduction begins with diffusion of CO2 molecule from the solution to cathode

surface which is coated with a suitable catalyst. One of the postulated mechanisms for activating

CO2 molecule is a single electron transfer to CO2, thereby generating a CO2
•− radical anion [61].

A single-electron addition bends the linear molecule because of the repulsion between acquired electron

over electrophilic carbon atom and free electron pairs on the oxygen atom. However, this mechanism

has a setback, because for such a process to take place, a very high redox potential is required

(i.e., −1.9 V versus NHE) [62]. But then, as seen in Table 1, which depicts the standard redox potential

for CO2 reduction reactions, the possibility of single-electron transfer to a CO2 molecule becomes

inconceivable [63]. In terms of thermodynamics, the edges of conduction band and valence band of a
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semiconductor must be above and below the standard reduction and oxidation potentials, respectively.

Therefore, this makes it quite clear why a single electron transfer to the CO2 molecule is highly

improbable. Hence, a better efficiency can be achieved with a multiple proton-coupled electron

transfer (PCET) process. This process involves the transfer of protons with electrons, thereby bypassing

the formation of high energy CO2
• radical [64]. Even though the PCET phenomenon makes CO2

reduction feasible, the process is dependent upon the concentration of available electrons and protons.

For example, as manifested from Equations (2)–(7), which show the main products obtained during CO2

reduction in the presence of H2O, by the PCET phenomenon (pH= 7) [65], generation of formic acid and

carbon monoxide is more favorable than generating methane. The reason behind such a phenomenon

is that the carbon monoxide requires two electrons and protons, whereas eight electrons and protons

are necessary for producing methane. Another possible pathway involved in CO2 reduction to CO

is decoupled electron-proton transfer, where the CO production can be carried out by the formation

of a CO2
2− radical [55]. However, theoretical studies and quantum chemical calculations provide

a better understanding of the mechanism and reaction pathway of electrochemical CO2 reduction.

For example, the computational hydrogen electrode (CHE) model is one of the most convenient and

widely employed methods for the PCET process [66]. Paterson et al. reported a CHE model for

electrochemical CO2 reduction on the metallic copper electrode and it has been found that metal

electrodes can easily generate hydrocarbon products upon CO2 reduction [67,68]. On the other hand,

the natures of the catalysts used for catalytic reaction play important roles in the reaction pathway.

Figure 1. Schematic diagram showing the illustration of CO2 reduction to chemical fuels using an

electrochemical cell.

Another challenge in electrochemical CO2 reduction is competition with proton reduction, i.e.,

hydrogen evolution reaction (HER), because it is a two-electron and proton process, requiring far

less energy [69]. This leads to poor selectivity to carbonaceous products. Last but not the least, CO2

has very low solubility in an aqueous medium (≈0.034 M), which negatively affects the overall CO2

reduction activity to chemical fuels. There are efforts to overcome this solubility problem by using

gas diffusion layers to use the polymer electrolytes. In conclusion, both thermodynamic and kinetic

barriers for the transformation to value-added fuels make it a challenging reaction. In the anode half

of the electrochemical cell, oxygen evolution takes place. Lastly, the ion exchange membrane functions

through avoiding oxidation of carbonaceous products by acting as a barrier to prevent the flow of

electrons and allowing passage of protons only. A schematic of the electrochemical cell and reactions

going on is shown in Figure 1, with the following key points:

a. CO2 adsorption on cathode surface;

b. PCET process;
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c. Desorption of products formed from the cathode surface.

2.1. Parameters of Electrochemical CO2 Reduction

To examine the utility of electrochemical CO2 reaction there have been key parameters set that

include current density (j), overpotential (η), faradaic efficiency (FE), turnover frequency (TOF), effect

of electrolyte, and stability. Those parameters will be discussed in this section, which will assist

the readers with understanding the concepts and applying them while evaluating their experiments

pertaining to electrochemical CO2 reduction in the laboratory.

2.1.1. Current Density (j)

Current density is an important parameter for evaluating the activity of electrochemical CO2

reduction. Application of a constant cell voltage gives rise to electrolysis current. Therefore, current

density (j) is described as the ratio between current (i) and the geometric surface area of working

electrode (A), as shown in Equation (8).

j =
i

A
(8)

2.1.2. Faradaic Efficiency (FE)

Faradaic efficiency is yet another important guideline with which to evaluate the amount of

product cross-over and electrochemical selectivity of CO2 reduction reaction [70]. It is given as the

ratio of the charge from total product generated (αNF, whereas α is the number of electrons transferred,

N is the amount of desired product’s moles, and F is the faraday constant 96,485 C mol−1) to the total

amount of charges passed during the electrolysis (Q), as shown in Equation (9) [55]. It also correlates

with the selectivity of products during CO2 reduction.

Efaradaic =
αNF

Q
(9)

2.1.3. Overpotential (η)

The difference between the actual required potential and the equilibrium potential is expressed as

overpotential. An electrocatalyst showcasing low overpotential is considered to show a better and

efficient catalytic activity. Overpotential is calculated by the difference between the standard potential

of the reaction of CO2 and the reduced product (Eeq), and actual electrode potential (E), as shown in

Equation (10) [71].

η = E− Eeq (10)

2.1.4. Turnover Frequency (TOF)

It is determined as the number of CO2 conversion products obtained over number of active sites

per unit time. The catalyst with a high turnover frequency means it possess many innate active sites,

which in turn, provide better activity. TOF is calculated by the ratio of the number of moles of the

target product produced per unit time (Np) to the maximum number of moles of the active site of the

catalyst (Nc), as shown in Equation (11) [71].

TOF =

Np

Nc
(11)

2.1.5. Effect of Electrolyte

The product selectivity can be altered/controlled by varying the electrolyte solution in

electrochemical CO2 reduction reaction [72]. To date, various types of electrolytes have been used,

such as non-aqueous (organic) solvents, aqueous and ionic liquids. Among them, aqueous electrolytes
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are cheap, environmentally friendly, and possess high sustainability. Moreover, in aqueous electrolytes,

the concentration, pH value, and buffer capacity are of equal importance for eventually affecting the

efficiency and product selectivity [73]. CO2 is highly soluble in organic electrolytes, but they are toxic,

expensive and require large overpotentials compared to aqueous electrolytes. The ionic liquids are

polar in nature which further helps to improve the conductivity and solubility of CO2.

2.1.6. Stability

Stability is one of the most important criteria in order to commercialize a catalyst. Therefore, even

if a catalyst has high efficiency, it is equally as important to have long term stability.

3. 2D Electrocatalysts

The 2D materials possess excellent structural and morphological features, as shown in Figure 2.

In the following sections, we will briefly describe the various 2D electrocatalysts for CO2 reduction

into CO.

Figure 2. Schematics showing the properties of 2D materials.

3.1. 2D Molybdenum (Mo) Transition Metal Dichalcogenides (TMDCs)

It is commonly known that the defects, edge sites, and dopants present with a catalyst greatly

influence the activity of electrochemical CO2 reduction. In recent years, 2D MoS2 has shown great

potential because of its unique physicochemical and structural properties. Asadi et al. reported bulk

MoS2 with a layer-stacked structure for electrocatalytic CO2 reduction to produce CO [74]. STEM

(Scanning transmission electron microscopy) investigation confirmed the presence of vertically aligned

multi-layered sheets of MoS2 flakes. Remarkably, as-obtained metal terminated edges of MoS2 were

considered reactive sites for electrocatalytic CO2 reduction. Excellent faradic efficiency of 98% was

achieved with a high current density operated at a minimal overpotential of 54 mV. Therein, the presence

of H+ from the water molecule (in electrolyte solution) and electron generated on the catalyst’s surface

contribute to the reduction of CO2 to form CO. Density functional theory (DFT) studies revealed that the

presence of MoS2 edge sites and metallic character of Mo atoms were collectively responsible for high

catalytic activity and stability over 10 h. That theoretical study, significantly, provides a new idea for the

experimental fabrication of a competent electrocatalyst. In another example, Nørskov et al. improved

catalytic performance by breaking the linear scaling relationship among *CO, *CHO, and *COOH

intermediates at the edge sites of MoS2 and MoSe2 [56]. Furthermore, in another study NÒrskov

and coworkers demonstrated that transition metal-doped MoS2 significantly improved the catalytic
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activity [75]. Product selectivity mainly depends upon binding energies of edge sites present over the

catalyst. For example, S edges of Ni-doped MoS2 and Mo edges of MoSe2 selectively produce CO.

However, S edges of undoped MoS2 are selective towards H2 formation.

In 2016, Abbasi and coworkers reported Nb-doped vertically aligned MoS2 electrocatalyst for

CO2 reduction into CO [57]. A small shift in Raman and XPS spectra confirmed Nb doping in MoS2

(Figure 3A,B). The CO2 reduction experiment was performed in an electrochemical cell by employing

cyclic voltammetry at a −0.8 ± 1.0 V potential range. All tests were performed in an electrolyte solution

composed of a CO2 saturated, 50:50 vol% mixture of 1-ethyl-3-methylimidazolium tetrafluoroborate

(EMIM-BF4) and deionized (DI) water. This optimized composition of electrolyte solution provides

the maximum number of protons for CO2 reduction reaction. Here, 5% Nb-doped MoS2 nanosheets

showed an improved current density compared to pristine MoS2 and Ta-doped MoS2 (Figure 3C).

The catalyst displayed faradaic efficiencies oscillating from 12% to 82% towards CO formation in

the potential range of −0.8 ± 0.16 V (Figure 3D). The formation rates for CO and H2 at 0.8 V were

2.23 × 10−9 mol min−1 and 1.98 × 10−9 mol min−1, respectively. As a result, Nb-MoS2 nanosheets

exhibited an excellent catalytic activity in terms of turnover frequency (TOF) at an overpotential

of 50–150 mV. In-depth DFT calculations were also conducted to understand the CO2 reduction

pathway. The results showed that Mo edges of pure MoS2 preferably form an *COOH intermediate at

lower overpotential. Moreover, Nb atoms help to reduce the binding strength among Mo and CO,

thereby minimizing onset potential to produce CO via formation of *CO and *COOH intermediates.

These findings revealed that Nb-doped MoS2 promotes faster desorption of CO compared to pristine

MoS2. Furthermore, DFT calculations revealed that a low concentration of Nb-doping selectively

reduced CO2 to CO. However, an increased Nb concentration over 5% showed a negative effect

on CO2 reduction performance because of the enlarged work function of Mo1−xNbxS2 composite.

Therefore, an appropriate amount of metal doping to a catalyst can significantly influence electronic

properties that may further intensify the overall catalytic performance. MoS2 is a well-known catalyst

for hydrogen evolution due to its unique structural characteristics where S atoms can make a strong

bond with H+ in the electrolyte solution [76–78]. Therefore, a smaller number of S atoms are available

for the CO2 reduction reaction. Addressing the issue, Yu and coworkers employed a structure-directing

approach and fabricated 3D TiO2@MoS2 to make bonding between the unsaturated S atom and Ti

metal, consequently making a large number of Mo atoms available for CO2 reduction reaction [76].

The porous nanosheets of TiO2 acted as a CO2 adsorbent due to high surface area and abundant active

sites (Figure 4A). Bonding between Ti and S atoms improved the electronic and adsorption properties

of MoS2 (Figure 4B showing Raman spectra of Ti-S band). Here, the electrolyte solution played an

important role in product selectivity. The N2-saturated solution led to hydrogen evolution, whereas

current density was increased towards CO formation in the CO2-saturated solution. Faradic efficiency

of ≈2.8% towards CO formation was observed at the potential of −0.21 V, while at a more negative

potential it reached up to 85% (Figure 4C). The catalyst showed excellent stability over 1000 cycles

which revealed its superiority (Figure 4D). Interestingly, long-term stability over 14 h was observed at

a steady potential of −0.70 V.
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Figure 3. (A) Raman spectra and (B) XPS analyses of pristine MoS2 and MoS2: Nb; (C) current densities

of different samples with respect to doping percentage, and (D) faradaic efficiencies (FE) of CO and H2

formation at different applied potentials. Reprinted with permission from [57].

Figure 4. (A) TEM image showing edges inset; (B) Raman spectra; (C) Faradic efficiencies at applied

potentials for CO and H2 formation; and (D) Linear sweep voltammetry (LSV) curves showing current

density at initial and after 1000 CV scans, for optimized 3D TiO2@MoS2. Reprinted with permission

from [76].
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3.2. 2D Graphene

Graphene has been playing a significant role in many advanced applications because of its high

chemical stability, superior electronic and thermal properties, and high specific surface area [79].

Typically, pristine graphene is inactive towards electrocatalysis because of its ineffectiveness towards

CO2 activation. This allows a greater extent of freedom for surface modifications to tune the catalytic

properties. The graphene templates, graphene oxide (GO), and reduced graphene oxide (RGO)

have been largely employed for catalytic applications [80–83]. The metal and non-metal doping

and composite formation with other semiconductors have been exercised to improve the catalytic

performance of graphene. To date, metals like Cu, Ni, Au, and Co have been successfully used as

dopants/co-catalyst [84]. Organometallic complexes and metal-organic frameworks (MOFs) have

also been tried with graphene for CO2 reduction [85,86]. Heteroatom doping (such as by nitrogen,

boron, and sulfur) to graphene can effectively improve the CO2 adsorption [87]. These heteroatoms

act as reaction centers for CO2 reduction and improve the catalytic activity [88,89]. For example,

pyridinic N in the N-doped graphene possesses a lower free energy threshold to produce the COOH

intermediate and selectively produce CO [90–93]. Additionally, the electrocatalyst comprising both

metal and non-metal is significant for heterogeneous catalysis aiming towards product selectivity [94].

Su et al. synthesized Ni-nitrogenated-graphene (Ni-N-Gr) sheets for generation of CO from CO2 [95].

The CO2 reduction capability was examined by using cyclic voltammetry in the buffer solution and

products were detected by GC-MS technique. At an optimized condition, Ni-N-Gr displayed the

highest faradaic efficiency over 90% for CO production at −0.7 to −0.9 V. The Ni-N-Gr showed excellent

catalytic performance with much higher activity than pristine Ni and N-Gr samples. To explore the

significance of Ni in Ni-N-Gr composite, Cu-N-Gr was also tested as a control sample and results

showed positive feedback towards the presence of Ni in composite. Further, the turnover frequencies

of CO per electrochemically active Ni atom was up to 2700 h−1 at −0.7 V and 4600 h−1 at −0.8 V versus

RHE. In another similar study, Ni2+ on nitrogen-doped graphene (Ni2+@NG) was investigated for

CO formation through electrocatalysis [88]. Previously, such types of catalysts were synthesized by

utilizing the conservative pyrolysis technique (800–1000 ◦C) and acid leaching process, which are

not so ecofriendly. Therefore, in this work the synthesis was carried out by employing a simple

solution-chemistry approach which is convenient for large scale applicability. In this method, first

N-doped graphene with an ultrathin nanosheet structure was synthesized by pyrolyzing a mixture

of g-C3N4 and glucose. Then, immobilization of Ni2+ in N-doped graphene was carried out by

reacting Ni(NO3)2 with N-doped graphene in the aqueous solution. The presence of Ni2+ ions and

Ni valence state on N-doped graphene were confirmed by XPS and XANES spectra, respectively.

The electrocatalyst produced CO with the faradaic efficiency of 92% at −0.68 V versus RHE. In contrast,

the efficiency of pristine N-doped graphene was below 60% at all potential capacities. Therefore, Ni2+

sites significantly facilitated the kinetics of CO2 reduction. Furthermore, to understand the effects

of other transition metals ion, metals such as Co2+ and Fe3+ were likewise restrained on N-doped

graphene. All the catalysts showed almost 4–5 times higher activity than pristine N-doped graphene.

The composite with Ni2+ showed the highest faradaic efficiency of 92% compared to that of Fe3+

(85%) and Co2+ (65%); see Figure 5A. The formation of CO occurred via the *COOH (* is surface sites)

intermediate (Figure 5B). The quadruple-pyridinic configuration of N-doped graphene exhibited the

maximum free energy barrier which protonates *COOH to form *CO.

In certain composites, stabilization of the single metal atom within the 2D nanostructure is crucial

to prevent aggregation. To address the issue, Jeong et al. reported single-atom Ni activated on RGO

sheets for CO formation which showed a faradaic efficiency of 97% at 0.8 V versus RHE [96]. The linkage

between Ni atoms and GO was accomplished by using the tris(2-benzimidazolylmethyl)amine (NTB)

ligand (Figure 6A). Firstly, Ni(NTB) complex was prepared. The NTB ligand makes a strong bond

with GO via π–π interaction and Ni ions via ligation by forming Ni(NTB)-GO complex. A uniform

distribution of Ni atoms on 2D-RGO sheets was confirmed by TEM analysis. XANES analysis was

used to confirm that nickel was in Ni2+ state rather than Ni0. In an inert condition, the catalysts
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displayed moderate activity towards the H2 at −0.71 V versus RHE. Significantly the current density

was improved in CO2-saturated electrolyte, reaching the onset potential of −5 mA cm−2 at −0.60 V

versus RHE. The observed current density was almost double at −1.1 V versus RHE, which implies its

superior activity compared to that of control samples (Figure 6B). Ni-N-RGO showed the maximum

faradaic efficiency (97%) for CO formation at −0.8 V versus RHE (Figure 6C). The reactivity of Ni-N4

active sites towards the intermediate formed in the reaction are responsible for such high catalytic

performance. DFT study revealed that the proton interactions with active sites of Ni-N-RGO are

unfavorable towards HER. Therefore, selectivity was observed towards CO2 reduction rather than

H2 formation.

Figure 5. (A) The CO2 performance for various transition metal ions restrained on N-graphene and

(B) a free energy diagram showing the formation of CO via electrocatalytic CO2 reduction. Reprinted

with permission from [88].

Figure 6. (A) Formation of Ni-N-RGO via chemical transformation of NTB adsorbed over RGO sheets;

(B) LSV curves of different samples; and (C) faradaic efficiency of CO formation and current density

versus applied potentials, reprinted with permission from [96].
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Jiang and coworkers also demonstrated that graphene shells with embedded Ni atoms were

active electrocatalysts for CO2 reduction [97]. From DFT calculations it was observed that Ni atoms

in the graphene layer can significantly lower the activation barrier of CO2 molecule, which further

weakens the binding with CO to form a facile product by lowering the proton reduction reaction.

In this way, Ni-graphene electrocatalyst showed an excellent catalytic activity towards CO formation

with a faradaic efficiency of 93.2% at current of 20 mA/mg. The turnover frequency (TOF) of 8 s−1 was

observed for the active Ni center and a 454,000 cumulative turnover number (TON) was recorded

below −0.7 V overpotential during 20 h of continuous electrolysis.

Jiang and coworkers reported more results with single Ni atoms emended in a graphene sheet [98].

Resulting catalysts endow CO selectivity over 90% of in aqueous solution, and the highest faradaic

efficiency of CO (95%) was obtained at an overpotential of 550 mV. Specifically, Ni single atomic sites

present in graphene were responsible for high selectivity of CO with 90% of faradaic efficiency over

the stability of 20 h. Further, CO formation current, more than 200 mA (50 mA cm−2) under a faradaic

efficiency of 97%, was established by using a 4 cm2 anion membrane electrode setup. Other transition

metals, including Co, Fe, and Mn, were also dispersed on a graphene layer and it was observed that the

reaction pathway changes with change in transition metals, specifically hydrogen was produced in the

presence of Co. DFT studies revealed that for the Ni single atoms, compared to Co atoms, the weaker

binding of CO and higher barrier for hydrogen evolution reaction accounted for the superior CO2

reduction towards selective formation of CO.

The stability of the oxidation state among metals is very crucial for catalytic reactions. Copper

is proven as one of the best and inexpensive catalysts for CO2 reduction reaction. Karapinar et al.

reported highly active, single-site Cu-N-C for electroreduction of CO2 [99]. They found that during the

catalytic process, isolated copper sites converted into metallic copper, which eventually act as active

sites for the CO2 reduction. Apart from nickel and copper, the iron-based catalysts are also considered

as the superior and most active materials due to their chemical stability towards the CO2 reduction

under negative potential. The key parameter of this material is that Fe3+ can easily coordinate with N

heteroatom supported on carbon and maintains its 3+ oxidation state throughout the electrocatalytic

reaction [100]. Also, such Fe3+ sites can adsorb a greater number of CO2 for electrocatalysis. Zhang and

co-workers reported a hybrid composite of Fe/N-Graphene [101]. The electrocatalyst was fabricated

by annealing the mixture of GO with iron chloride (FeCl3) at 700–800 ◦C in an inert atmosphere,

as shown in Figure 7A. The oxygen functional groups in GO adsorbed metal cations through the

electrostatic interaction. Whereas, Fe atoms in N-graphene matrices created Fe-N4 sites, which further

acted as CO2 activators. N dopant acted as an immobilizer among Fe atoms and the graphene surface

through metal–nitrogen interaction. As a result, catalysts undergo selective CO2 reduction towards

CO formation with a faradaic efficiency of 80% at low potential of −0.60 V versus RHE. The catalyst

was operated over 10 h at −0.60 V versus RHE to examine its long-term stability. The mechanism

of CO2 to CO conversion was studied by theoretical simulations. The formation of CO took place

by sharing of two protons and two electrons via COOH* intermediate, as revealed in Figure 7. Here,

substitution of nitrogen to graphene lowered the energy barrier of COOH* intermediate and facilitated

the CO* formation.

Zhu and coworkers reported the superior catalytic activity of 94.2%, the faradaic efficiency for CO

formation by employing 2D N-doped carbon nanorod arrays/ultrathin carbon nanosheet catalysts [102].

In the synthesis, aniline polymerization was carried out in the presence of carbon nanosheets and acid

treatment, and resulting catalysts were obtained by pyrolysis. It was observed that the catalyst was

proficient of retaining its activity for 30 h at a minimal onset overpotential of 97 mV. In the Tafel slope,

a low value of 65 mV dec−1 specified a fast pre-equilibration process of transfer of one electron followed

by a rate-determining step. DFT calculation suggests that the N pyridinic sites and 2D structure were

responsible for lowering the free energy barriers of intermediates (*COOH and *CO) and boosting CO

desorption to form CO. Therefore, these results showed an excellent catalytic activity among other

reported doped carbon materials.
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Figure 7. (A) The synthesis method of the Fe/NG catalyst; (B) free energy diagram showing mechanism

of CO2 reduction to CO; and (C) the structure for Fe-N4 moieties on layered graphene showing

nitrogen-substitution. Reprinted with permission from [97].

Apart from single metal atom insertion, the transition metal sulfides have also been tried with

graphene. For example, silver sulfide (Ag2S) possesses excellent physical, chemical, and thermal

properties that are suitable for catalytic applications. Along those lines, Zeng et al. reported Ag2S/N-S

doped rGO hybrid for CO2 reduction [103]. A hydrothermally synthesized, Ag2S/N-S-doped rGO

electrocatalyst was employed for CO2 reduction toward CO. Here, CO, H2, and CH4 were obtained as

products, while selectivity for CO was observed in the wide potential range of −1.08 to −0.58 V versus

RHE. The catalyst manifested a current density of 470 µAcm−2 at −0.759 V versus RHE. An excellent

catalytic activity owing to a faradaic efficiency of 87%, and long-term stability over 40 h, were achieved

by the catalyst. The faradaic efficiency of this catalyst was enormously higher than pristine N-S-rGO

(3.2%) and Ag2S nanowires (41.7%) [104]. Significantly, an increase in current density was observed,

as the potential was swept cathodically which specified the increase in CO2 reduction kinetics in the

system. In the CO formation mechanism, Ag ions bind with CO2 molecule and generate a COOH

intermediate by combining one proton and one electron. Afterwards, the intermediate (COOH) further

reacts with a second proton and electron pair to form CO. The high surface area of rGO maximized the

reactive sites for CO2 molecule and N-S doping eventually enhanced the electrical conductivity of rGO.

Pitch derived 2D N-doped porous carbon nanosheets, which are similar to graphene, were also

found to be a superior catalyst for selective CO2 reduction with high stability [105]. For synthesis,

the authors used a NH3 etching strategy using NaCl template. NH3 etching increases the catalyst’s

surface area by creating nanopores, and further, helping to insert nitrogen atoms into a carbon

framework. Resulting catalysts showed high catalytic performance with 84% of faradaic efficiency

at an overpotential of −0.49 V and a negligible onset overpotential of −0.9 V for CO production.

Such excellent catalytic behavior was due to presence of nanoporous 2D architecture and the high

content of pyridinic N active sites which favored fast charge transfer, and high CO2 adsorption. DFT
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studies confirmed that the pyridinic N sites favorably bind with COOH* intermediates and further

facilitate catalytic reduction.

3.3. 2D Tungsten TMDCs

Tungsten is an emerging candidate for sustainable energy applications due to its low price,

non-toxicity, and large atomic size compared with other TMDCs [106–111]. Due to its exciting

electronic properties, tungsten dichalcogenides act as a catalytic site for electrochemical CO2 reduction

reactions. Also, tungsten dichalcogenides have the anisotropic properties of its basal and edge plane;

therefore, most of the catalytic reactions occur on the edge sites [112]. These limited catalytic sites

can be increased by transition metal doping [113]. In this regard, Asadi et al. fabricated the WSe2

nanoflakes (NFs) by a chemical vapor transport growth and exfoliation technique [114]. They found

that the CO2 reduction activity of TMDCs in 50% EMIM-BF4 with water was much higher compared to

other TMDCs and Ag NPs. According to work functions estimation, the trend of monolayer TMDCs

showed activity in the order WSe2 <MoSe2 <WS2 <MoS2 (Figure 8A). WSe2 NFs had the lowest work

function of those comprised of monolayered TMDCs. Also, electrochemical impedance spectroscopy

(EIS) outcomes were matched with the work function trend (Figure 8B).

Figure 8. (A) Work functions of transition metal dichalcogenides (TMDCs) and Ag NPs; (B) CO2

reduction electrochemical impedance spectroscopy (EIS); (C) Cyclic voltammetry curves and (D) faradaic

efficiency curves by applied potential. Reprinted with permission from [114].

Charge transfer resistance (Rct) is an important kinetic factor for the electrochemical rate constant.

Charge transmission resistance of WSe2 NFs (≈180 Ω) was lower than MoS2 and Ag nanoparticles

(Figure 8B) [114]. Therefore, WSe2 possesses a fast electron transfer property which eventually affects

the CO2 reduction reaction. Experiments were performed in an electrolyte solution of 50% EMIM-BF4,

50% water. It was found that WSe2 NFs displayed a 18.95 mA cm−2 current density for CO at a minimal

potential of 54 mV (Figure 8C,D). Here, EMIM+ ion in the ionic liquid acted as a transporter of CO2 to

the catalyst surface. Also, the CO intermediate was more stable on the metallic edges of WSe2 NFs,

suggesting the possibility of CO formation after CO2 reduction. Therefore, such systems owing to

high catalytic performance operating at low overpotentials have the disruptive potential to solve the

current obstacles of CO2 reduction technology.
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3.4. 2D InSe

Among various 2D materials, InSe is also considered as an emerging electrocatalyst. Although

InSe is not a transition metal chalcogenide, we intentionally added this section to our study. Recently,

the theoretical study about InSe was carried out by Jiang et al., which demonstrated its potential for

CO2 reduction [115]. The single metal (e.g., Rh, Mn, Cu, Zn, and Cr) was embedded in a 2D InSe

substrate and catalytic reactivity towards CO, HCOOH, H2, and CH4 were studied. They showed that

InSe systems with Rh, Mn, and Cu metals obeyed the linear scaling relationships among adsorption

energies of intermediates, such as *CO and *COOH. However, the relationship broke down for system

containing Zn and Cr metals. Such an interesting feature of 2D InSe offers a reliable method for

the experimental usage, and in turn, the product selectivity. The Zn@2D InSe system effectively

produces CO with limiting the potential of −0.78 V because it is situated on the scaling line among

*COOH and *CO. Its lowered desorption energy (0.14 eV) executes selectivity towards CO. Therefore,

such theoretical studies enrich the understanding of 2D systems for electrocatalytic applications.

The summary of various 2D nanomaterials for electrochemical CO2 reduction is displayed in

Table 2.
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Table 2. The summary of various 2D nanomaterials for electrochemical CO2 reduction. Details included reactor type, example of catalysts, current density, onset

potential, over potential, and the main product of CO2 reduction with faradaic efficiency and stability.

No Catalyst
Current Density
(versus Applied

Potential)

Onset Potential (V)
or Overpotential

(versus RHE)

CO Faradaic Efficacy
(FE% versus RHE)

Stability
(versus RHE)

Reactor (Type, Volume), Electrolyte Ref, Year

1 MoS2 65 mA cm−2
−0.764 V 98% @ −0.764 V 10 h @ −0.764 V

Two-compartment three-electrode electrochemical
cell in Ionic liquid, 96:4 mol% water:EMI-BF4

[74], 2014

2 Metal doped MoS2 Theoretical study [56], 2016

3 MoS2 and MoSe2 Theoretical study [75], 2014

4 Nb-MoS2 237 mA cm−2 31 mV @ −0.8 V 82% @ −0.8 V 10 h @−0.8 V
Two-compartment three-electrode electrochemical
cell, Ionic liquid, CO2 saturated50:50 vol%
EMIM-BF3:water

[57], 2016

5 3D TiO2@MoS2 68 mA cm−2 100 mV @ −0.7 V 85% @ −0.70 V 14 h @ −0.70 V
Three-electrode system, CO2-saturated 0.1 M
Potassium bicarbonate

[76], 2018

6
Nickel-nitrogen-modified

graphene (Ni-N-Gr)
≈1.45 mA cm−2

−0.5 V 90% @ −0.7 to −0.9 V 5 h @ −0.65 V CO2-saturated 0.1 M Potassium bicarbonate [95], 2016

7
Ni2+ on N-doped

graphene (Ni2+@NG)
10.2 mA cm−2

≈−0.40 V 92% @ −0.68 V
20 h (≈2.85→≈−2.44
mA cm2) @ −0.58 V

Three-electrode system, CO2-saturated 0.5 M
Potassium bicarbonate

[88], 2019

8
Atomic iron dispersed on

N-doped graphene (Fe/NG)
2.6 mA cm−2

− 0.28 V 80% @ −0.60 V 10 h @ −0.60 V
CO2-saturated 0.1 M Potassium
bicarbonate solution

[101], 2018

9
Nickel- and nitrogen-doped

reduced graphene oxide
(Ni-N-rGO)

5 mA cm−2
−0.60 V 97%@ −0.8V -

Two-compartment electrochemical cell (Nafion
117 membrane) CO2-saturated 0.5 M
Potassium bicarbonate

[96], 2018

10
Nickel-N-doped graphene

shell (Ni-N-GS)
4 mA cm−2 0.7 V 93.2% @ 0.7 V 20 h @ 0.7 V

A homemade Teflon H-cell, CO2-saturated 0.5 M
Potassium bicarbonate

[97], 2017

11
Ni single atoms in graphene

nanosheets (Ni-G)
50 mA cm−2 480 mV 90% @ −0.87 V 20 h @ 0.64 V

A homemade Teflon H-cell, CO2-saturated 0.5 M
Potassium bicarbonate

[98], 2018

12
1D/2D N-doped carbon

nanorod arrays/ultrathin
carbon nanosheets

3.78 mA cm−2 97 mV, @ −0.45 V 94.2% @ −0.45 V 30 h, @ −0.45 V
A homemade three-electrode system,
CO2-saturated 0.5 M Potassium bicarbonate

[102], 2019

13 Ag2S/N-S-doped rGO 70 µA cm−2
−0.34 V 87.4% @ −0.76V 40 h @ −0.759 V

Double-chamber electrochemical cell with
a Nafion 117 membrane 0.1 M
Potassium bicarbonate

[103], 2018

14
2D N-doped porous
carbon nanosheets

1.15 mA cm−2
−0.19 V 84% @ −0.49 V 8 h @ −0.60 V Ar or CO2-saturated 0.1 M Potassium bicarbonate [105], 2018

15 WSe2 nanoflakes (NFs) 18.95 mA cm−2 54 mV 24% @ 54 mV 27 h @ −0.364 V
Three-electrode two- compartment cell ionic
liquid set-up (50% EMIM-water)

[114], 2016

16 Metal@2D InSe Theoretical study [115], 2019
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4. Conclusions

In the field of electrocatalytic CO2 reduction, recent studies were mainly concentrated on the

design of various types of efficient catalysts. A variety of tailored 2D nanostructures were fabricated

by researchers with the rational design of experimental procedures. In particular, metal and non-metal

doped 2D templates could be highly efficient and stable catalysts. In this study, we have briefly

reviewed the recent developments in selective electrochemical CO2 reduction to CO using various

2D nanostructures. The foremost goal of this study was to introduce the fundamentals and different

synthetic strategies of 2D materials. The high surface area of 2D nanostructure encourages CO2

adsorption, and the presence of edge sites/dopants helps to generate reactive sites for CO2 reduction.

Besides, single atom doped 2D structures hold great potential for electrocatalytic CO2 reduction, since

they have been shown to have high faradaic efficiency along with CO selectivity. While highlighting

the different fabrication methods, we have also paid considerable attention to the theoretical studies

because theoretical simulations are of equal importance to understand the reactivity, product selectivity,

and mechanism of CO2 reduction pathway. Although several noteworthy successes in CO2 reduction

have been achieved by 2D based nanostructures, further efforts are required for large scale applications.

Additionally, more focus should be given toward improving upon the green, scalable, and sustainable

electrocatalyst fabrications, which is becoming a crucial factor for realistic industrial applications.

Apart from that, CO2 transformation into higher hydrocarbon products such as ethane, ethanol, or

ethylene is also of similar importance, and has a great challenge ahead due to the low efficiency of the

existing catalysts. Copper-based catalysts have been proven to be superior materials for generating

higher hydrocarbons, including C2 and C3 products. However, we believe that the interesting surface,

electronic, and structural properties of 2D materials could also be significant in higher hydrocarbon

production in the near future.
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