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The spatially uniaxially anisotropic d=3 Ising spin glass is solved exactly on a hierarchical lattice. Five
different ordered phases, namely, ferromagnetic, columnar, layered, antiferromagnetic, and spin-glass phases,
are found in the global phase diagram. The spin-glass phase is more extensive when randomness is introduced
within the planes than when it is introduced in lines along one direction. Phase diagram cross sections, with no
Nishimori symmetry, with Nishimori symmetry lines, or entirely imbedded into Nishimori symmetry, are
studied. The boundary between the ferromagnetic and spin-glass phases can be either reentrant or forward, that
is either receding from or penetrating into the spin-glass phase, as temperature is lowered. However, this
boundary is always reentrant when the multicritical point terminating it is on the Nishimori symmetry line.
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I. INTRODUCTION

The Ising spin glass �1� yields a phase diagram with a
distinctively complex ordered phase, in d=3. A wide accu-
mulation of methods and results has occurred for this system.
Most remarkably, in spite of its high spatial dimension and
complex ordering behavior, exact or precise information is
being obtained for this system �2–12�. Thus, in the phase
diagram in terms of temperature and concentration of anti-
ferromagnetic bonds, the occurrence of the Nishimori sym-
metry line has been deduced �2,3� and the accurate location
of the multicritical point has been predicted �10,12�. Further-
more, in systems with the Nishimori symmetry, it has been
shown that the ferromagnetic phase cannot extend to antifer-
romagnetic bond concentrations beyond that of the multi-
critical point �2,3�. The two remaining options being a
straight line or a reentrance situation, subsequent works

�19,20� on hierarchical lattices have shown that for these
systems, the spin-glass phase diagram is reentrant, namely,
that below the multicritical point, the ferromagnetic phase
recedes from the spin-glass phase as temperature is lowered.
Exact results recently have also been extended to Potts spin
glasses �21�. These results complement recent precise calcu-
lations, using Monte Carlo simulations, on cubic lattices
�13–18�.

A spatially uniaxially anisotropic d=3 system is studied
in this work, to our knowledge the first study of quenched
randomness and frustration in a spatially anisotropic higher-
dimensional system. In fact, both anisotropy and quenched
randomness have acquired increased relevance from high-
temperature superconductivity results �22,23�. Our calcula-
tion is exact for a hierarchical lattice and approximate for a
cubic lattice. We find a rich phase diagram �e.g., Fig. 1� with
five different ordered phases, namely with ferromagnetic, an-
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FIG. 1. �Color online� Constant-temperature cross sections of the global phase diagram for Kz /Kxy =0.5, as a function of pxy and pz,
which are the concentrations of antiferromagnetic xy and z bonds, respectively. At low temperatures �high Kxy�, the central spin-glass �SG�
phase separates the corner ferromagnetic �F�, columnar �C�, antiferromagnetic �A�, and layered �L� phases. The diagrams are twofold
symmetric along each axis, but not fourfold symmetric, due to the difference between longitudinal �pxy =0� and transverse �pz=0� spin
glasses. As temperature increases, the paramagnetic �P� phase appears at the central point, first reaches the transverse spin-glass system and
eliminates the spin-glass phase, then reaches the longitudinal spin-glass system and eliminates the spin-glass phase. In the latter system, the
spin-glass and paramagnetic phases simultaneously occur for a very narrow range of temperatures, as also seen in the inset in the lower left
panel of Fig. 3.
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tiferromagnetic, layered, columnar, and spin-glass order. The
spin-glass phase is more extensive when randomness is in-
troduced within the planes than when it is introduced in lines
along one direction.

The global phase diagram includes cross sections with no
Nishimori symmetry, cross sections with Nishimori symme-
try lines, and a cross section entirely imbedded within Nishi-
mori symmetry. Thus, the multicritical point between the
spin-glass, ferromagnetic, and paramagnetic phases, previ-
ously found to occur on the Nishimori symmetry line, is also
found here at points with no Nishimori symmetry, but renor-
malizes to a fixed distribution of interaction probabilities that
obeys Nishimori symmetry. Nevertheless, we find that the
boundary between the ferromagnetic and spin-glass phases
can be either reentrant or forward, that is either receding
from or penetrating into the spin-glass phase, as temperature
is lowered. When the multicritical point is not on the Nishi-
mori symmetry line, the ferromagnetic-spin glass boundary
can be reentrant or forward. However, when the multicritical
point is on the Nishimori symmetry line, this boundary is
always reentrant �19,20�, consistently with the rigorous result
�2,3�.

II. UNIAXIALLY ANISOTROPIC SPIN GLASS

The uniaxially anisotropic Ising spin-glass system has the
Hamiltonian

− �H = �
u

�
�ij�u

Kij
u sisj , �1�

where si= �1 at each site i, �ij�u denotes a sum over nearest-
neighbor pairs of sites along the z direction �u=z� or in the
xy plane �u=xy�, and the bond strengths Kij

u are equal to
Ku�0 with probability 1− pu and −Ku with probability pu,
respectively corresponding to ferromagnetic and antiferro-
magnetic interaction. When imbedded in a cubic lattice, the
Hamiltonian �1� yields a uniaxially anisotropic d=3 system.

Hierarchical lattices are d-dimensional lattices yielding
exact renormalization-group solutions to complex statistical
mechanics problems. These lattices are constructed by the

repeated self-imbedding of a graph into a bond �24–26�. The
shortest path between the external vertices of the graph gives
the length rescaling factor b and the number of bonds in the
graph gives the volume rescaling factor bd, from which the
dimension d is determined. Hierarchical lattices have been
used to study a wide variety of problems, including chaotic
rescaling �27,28�, spin-glass �19�, random-field �29�,
Schrödinger equation �30�, lattice-vibration �31�, dynamic
scaling �32�, random-resistor network �33�, aperiodic magnet
�34�, complex phase diagram �35�, directed-path �36,37�, het-
eropolymer �38�, directed-polymer �39�, and, most recently,
scale-free and small-world network �40–47� systems, etc.
More recently, hierarchical lattices have been created �48�
for the study of spatially anisotropic systems. The mutual
repeated self-imbedding of two appropriately chosen graphs,
with differentiated interactions, yields a uniaxially aniso-
tropic system, whereas a higher number of graphs is needed
to achieve higher spatial anisotropy �48�. These hierarchical
systems must reduce to isotropy and/or lower spatial dimen-
sions when corresponding interactions are set equal to each
other or to zero, as illustrated in Fig. 2. An anisotropic hier-
archical lattice has already been used to obtain the phase
diagram of the uniaxially anisotropic d=3 tJ model of elec-
tronic conduction �22�. When imbedded into the hierarchical
lattice of Fig. 2, the Hamiltonian �1� yields a uniaxially an-
isotropic d=3 spin-glass system that is exactly soluble.

III. EXACT RENORMALIZATION-GROUP SOLUTION:
FLOWS OF THE QUENCHED DISTRIBUTIONS

OF THE ANISOTROPIC SPIN-GLASS INTERACTIONS

The renormalization-group solution proceeds in the direc-
tion opposite to the construction of a hierarchical model.
Each graph is replaced by a renormalized bond via summa-
tion over the spins on the internal sites of the graph. This is
achieved by a combination of two types of steps: the replace-

ment, by a single bond K̃ij, of two bonds that are either in
parallel, referred to as bond moving:

K̃ij = Kij
I + Kij

II, �2�

or in series, referred to as decimation:

K̃ik =
1

2
ln� cosh�Kij + Kjk�

cosh�Kij − Kjk�
	 . �3�

The quenched probability distribution P̃�K̃� of the replacing
bond is calculated by the convolution

P̃�K̃� =
 dKIdKIIPI�KI�PII�KII��„K̃ − R�KI,KII�… , �4�

where R�KI ,KII� is the right-hand side of Eq. �2� and �3�, KI

and KII are the interactions entering the right-hand side of
either of these equations, with quenched probability distribu-
tions PI�KI� and PII�KII� �19,29�.

Accordingly, the renormalization of Pxy is obtained as fol-
lows, following the upper Fig. 2 in the direction opposite to
the arrow: �i� from the bond-moving of Pxy with itself, ob-

taining P̃1; �ii� from the bond-moving of Pz with itself, ob-

K
z

K
xy

FIG. 2. Construction of the uniaxially anisotropic d=3 hierar-
chical model. Two graphs are mutually and repeatedly self-
imbedded. Note that for Kxy =0, Kz=0, and Kxy =Kz, the system
reduces, respectively, to the d=1, isotropic d=2, and isotropic d
=3 systems.
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taining P̃2; �iii� from the decimation of P̃1 and P̃1, obtaining

P̃3; �iv� from the decimation of P̃2 and P̃1, obtaining P̃4; �v�
from the decimation of Pxy and Pxy, obtaining P̃5; �vi� from

the decimation of P̃3 and P̃1, obtaining P̃6; �vii� from the

decimation of P̃4 and P̃2, obtaining P̃7; �viii� from the deci-

mation of P̃5 and Pxy, obtaining P̃8; �ix� from the bond-

moving of P̃6 and P̃7, obtaining P̃9; �x� from the bond-

moving of P̃7 and P̃7, obtaining P̃10; �xi� from the bond-

moving of P̃9 and P̃10, obtaining P̃11 �xii� finally, from the

bond-moving of P̃11 and P̃8, obtaining the renormalized
quenched distribution Pxy� . Thus, in each renormalization-
group step, the renormalized distribution Pxy� is obtained
from the convolutions of 27 unrenormalized distributions Pxy
and Pz. The renormalized distribution Pz� is similarly ob-
tained from the convolutions of 27 unrenormalized distribu-
tions Pxy and Pz, but with a different sequencing dictated by
the lower Fig. 2.

The renormalization-group transformations of the
quenched probability distributions Pxy and Pz, given in the
preceding paragraph, are implemented numerically, resulting
in a distribution of interaction-strength values and a prob-
ability associated with each value, namely, a histogram.
Thus, the initial �Ku double-� distribution functions, de-
scribed after Eq. �1�, are of course not conserved under the
scale coarsening of the renormalization-group transforma-
tion. The number of histograms increases after each convo-
lution. When a maximum number of histograms, set by us, is
reached, a binning procedure is applied �19,29�: Before each
convolution, the range of interaction values is divided into
bins, separately for positive and negative interactions. The
interactions falling into the same bin are combined according
to their relative probabilities. The convolution then restores
the set maximum number of histograms. In this work, we
have used the maximum number of 90 000 for histograms
for each distribution Pxy and Pz.

IV. PHASE DIAGRAMS AND FIXED DISTRIBUTIONS

We have obtained the global phase diagram of the uniaxi-
ally anisotropic d=3 spin-glass system in terms of the origi-
nal interactions and probabilities �Kxy ,Kz , pxy , pz�. In each
thermodynamic phase, quenched probability distributions

flow, under repeated renormalization-group transformations,
to a limiting behavior �sink� characteristic of that thermody-
namic phase. Phase boundary points flow to their own char-
acteristic �unstable� fixed distributions, shown below. Analy-
sis at these unstable fixed distributions yields the order of the
phase transitions �19,29�.

We find six different phases for this system, with cor-
responding sinks characterized in Table I in terms of the
average positive and negative interactions of the limiting dis-
tribution. These phases are the ferromagnetic, antiferromag-
netic, layered, columnar, spin-glass ordered phases and the
disordered paramagnetic phase. In the layered phase, the
spins are mutually aligned in each xy plane; these planes of
mutually aligned spins form an antiferromagnetic pattern
along the z direction. In the columnar phase, the spins are
mutually aligned along the z direction; these lines of mutu-
ally aligned spins form an antiferromagnetic pattern along
the xy directions. Both of these phases are thus distinct from
the antiferromagnetic phase, which is antiferromagnetic in
all three directions. There is a single spin-glass phase, ex-
tending to anisotropic systems.

A. Phase diagrams with no Nishimori symmetry

Cross sections of the global phase diagram are given in
Figs. 1, 3, and 4. All phase transitions in these figures are
second order. Figure 1 shows constant-temperature cross sec-
tions of the global phase diagram as a function of pxy and pz.

TABLE I. Sinks of the renormalization-group flows in the dif-
ferent phases. These sinks are characterized here in terms of the
average positive and negative interactions of their limiting
quenched probability distribution.

Phase �K+
xy� �K−

xy� �K+
z � �K−

z �

Ferro +� 0 +� 0

Antiferro 0 −� 0 −�

Columnar 0 −� +� 0

Layered +� 0 0 −�

Spin Glass +� −� +� −�

Para 0 0 0 0
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FIG. 3. �Color online� Temperature-concentration phase dia-
grams for isotropically mixed �upper left�, transverse �upper right�,
longitudinal �lower left�, and pxy =0.5pz spin-glass systems. In all
cases, Kz /Kxy =0.5. The upper left and right phase diagrams are
seen to be, respectively, reentrant and forward, namely, with a fer-
romagnetic phase that, respectively, recedes from or proceeds to-
ward the spin-glass phase as temperature is lowered, as clearly seen
in the insets. There are no points obeying Nishimori symmetry in
the phase diagrams of this figure. Note the remarkably narrow spin-
glass phase, reaching zero temperature, in the longitudinal spin-
glass system, as also seen in the inset. All phase transitions in this
figure are second order.
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At low temperatures �high Kxy�, the central spin-glass �SG�
phase separates the corner ferromagnetic �F�, columnar �C�,
antiferromagnetic �A�, and layered �L� phases. The diagrams
are twofold symmetric along each axis, but not fourfold sym-
metric, due to the difference between transverse �pz=0� and
longitudinal �pxy =0� spin glasses. As temperature increases,
the paramagnetic �P� phase appears at the central point, first
reaches the transverse spin-glass system and eliminates the
spin-glass phase, then reaches the longitudinal spin-glass
system and eliminates the spin-glass phase. Figure 3 shows
temperature-concentration phase diagrams for isotropically
mixed, transverse, longitudinal, and pxy =0.5pz spin-glass
systems. The upper left and right phase diagrams are seen to
be, respectively, reentrant and forward, namely, with a ferro-
magnetic phase that, respectively, recedes from or proceeds
toward the spin-glass phase as temperature is lowered, as
clearly seen in the insets. The Nishimori symmetry �see be-
low� is obeyed only at four isolated ordinary points in each
cross section in Fig. 1 and is not obeyed at any point in the
phase diagrams in Figs. 3 and 4, so that the forward behavior
is not excluded by the rigorous results �2,3�.

A remarkably narrow spin-glass phase, reaching zero tem-
perature, occurs in the longitudinal spin-glass system. Zero-
temperature phase diagrams are shown in Fig. 4 for the lon-
gitudinal �left column� and transverse �right column� spin-
glass systems. With the appropriate reversal in variables, the
longitudinal and transverse spin-glass phase diagrams are
seen in this figure to be qualitatively similar, but quantita-
tively different. The spin-glass phase is more extensive in the
transverse case. This can be understood from the more ex-
tensive intermixing of the ferromagnetic and antiferromag-
netic bonds.

B. Temperature-concentration phase diagrams
with Nishimori symmetry curved lines

The Nishimori symmetry condition �2,3� for isotropic sys-
tems

1 − p

p
= e�2K �5�

generalizes, for uniaxially anisotropic spin-glass systems, to

1 − pxy

pxy
= e�2Kxy and

1 − pz

pz
= e�2Kz. �6�

For Nishimori symmetry to obtain, both equations have to be
satisfied, but the signs in the exponents can be chosen inde-
pendently. The Nishimori condition, in its general form

Pu�− Ku�
Pu�Ku�

= e�2Ku �7�

for each histogram pair of each distribution, is invariant
�closed� under our renormalization-group transformation.

If one of the two conditions in Eq. �6� is fixed, phase
diagram cross sections are obtained, in which Nishimori
symmetry holds along a line. Thus, throughout the three
phase diagrams on the left in Fig. 5, the condition on
�Kxy , pxy� is fixed. The condition on �Kz , pz�, and therefore
Nishimori symmetry, is satisfied along the dashed lines on
the left in Fig. 5. In these temperature versus concentration
phase diagrams, it is seen that the multicritical points be-
tween the ferromagnetic, spin-glass, and paramagnetic
phases lie on the Nishimori symmetry line. Furthermore, it
has been proven �2,3� that a forward phase diagram cannot
occur below such a multicritical point that is on the symme-
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FIG. 5. �Color online� Phase diagrams with Nishimori symmetry
lines �dashed� for different anisotropy parameters: The ratio Kz /Kxy

is 2, 1, and 0.5 from top to bottom. In the left column, pxy satisfies
the Nishimori condition. In the right column, Kz satisfies the Nishi-
mori condition. All phase transitions in this figure are second order.
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try line. On the left in Fig. 5, this is indeed the case, with
reentrant phase diagrams, as also seen in isotropic spin
glasses �19,20�. Recall that in Sec. IV A, multicritical points,
between the same phases as here, that do not lie on Nishi-
mori symmetry occur with both reentrant and forward phase
diagrams. However, the latter nonsymmetric multicritical
points flow, under renormalization-group transformations, to
the �doubly unstable� fixed distribution of the symmetric
multicritical points, therefore being in the same universality
class and having the same critical exponents.

In the three phase diagrams on the right of Fig. 5, the
condition on �Kz , pz� is fixed. In these concentration-
concentration phase diagrams, the multicritical points be-
tween the ordered �ferromagnetic, antiferromagnetic, lay-
ered, or columnar�, spin-glass, and paramagnetic phases
again lie on the Nishimori symmetry lines.

C. Concentration-concentration phase diagrams
with Nishimori symmetry straight lines

In the phase diagrams in Fig. 5, the ratio Kz /Kxy is held
constant. On the left and center of Fig. 6, again the condition
in Eq. �6� on one interaction is fixed and the other interaction
strength is held constant. Thus, the Nishimori symmetry lines
become straight lines. The multicritical points between the
ordered �ferromagnetic, antiferromagnetic, layered, or co-
lumnar�, spin-glass, and paramagnetic phases again lie on the
Nishimori symmetry lines. In the left phase diagram, due to
the enforced Nishimori symmetry condition, Kz=0 along the
line pz=0.5 and the system reduces to d=2. Along this line,
first-order transitions between ferromagnetic and layered
phases and between antiferromagnetic and columnar phases
terminate at d=2 critical points. From pz�0.5, d=3 second-
order boundaries between each ordered phase and the para-
magnetic phase terminate on the d=2 critical points. In the
center phase diagram, due to the enforced Nishimori symme-

try condition Kxy =0 along the line pxy =0.5 and the system
reduces to d=1. Accordingly, the system is disordered �para-
magnetic� along the entire length of this line.

D. The phase diagram entirely imbedded
in Nishimori symmetry

In the rightmost Fig. 6, both conditions of Eq. �6� are
satisfied throughout the figure. With two symmetry con-
straints, this is a unique surface in the global phase diagram
of our model. The system reduces to d=2 and d=1, as ex-
plained above, for pz=0.5 and pxy =0.5, respectively. The
phase boundaries around the paramagnetic phases are actu-
ally lines of the multicritical points where the paramagnetic,
ordered �ferromagnetic, layered, antiferromagnetic, or co-
lumnar�, and spin-glass �not seen in this cross section�
phases meet.

No spin-glass phase occurs within the Nishimori-
symmetric subspace. The phase transitions seen in the right-
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Kz→−Kz reflections. �d� Fixed distribution for the spin-glass phase.
This phase sink is an isotropic runaway, attracting both spatially
isotropic and anisotropic spin-glass phase points, and does not obey
Nishimori symmetry.
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most Fig. 6, namely, ordered–spin-glass–paramagnetic
multicritical and ferromagnetic-layered, antiferromagnetic-
columnar first-order transitions, are the only phase transi-
tions of the system that occur under Nishimori symmetry.

E. Fixed distributions

The fixed distributions underpinning the phase diagrams
of this system are given in Fig. 7. The fixed distributions for
the ferromagnetic–spin-glass boundary, paramagnetic–spin-
glass boundary, and the ferromagnetic–spin-glass–
paramagnetic multicritical points are spatially isotropic, but
attract both spatially isotropic and anisotropic phase transi-
tions. The fixed distribution for the ferromagnetic–spin-
glass–paramagnetic multicritical points obeys Nishimori
symmetry, but attracts multicritical points that obey and do
not obey Nishimori symmetry. In the latter cases, as seen
above, both reentrant and forward phase diagrams occur. The
fixed distributions for the antiferromagnetic–spin-glass,
columnar–spin-glass, layered–spin-glass phase boundaries
and for the antiferromagnetic–spin-glass–paramagnetic,

columnar–spin-glass–paramagnetic, layered–spin-glass–
paramagnetic multicritical points are as shown in Figs. 7�a�
and 7�c�, respectively, but with the appropriate Kxy→−Kxy
and/or Kz→−Kz reflections.

V. CONCLUSION

The exact solution of the spatially uniaxially anisotropic
spin glass on a d=3 hierarchical lattice yields different phase
diagrams. In view of the semiquantitative agreement be-
tween spatially isotropic spin-glass results on cubic and hi-
erarchical lattices �19�, it would certainly be worthwhile to
investigate on cubic lattices the phenomena found in the
present study. Furthermore, the exact study of spin glasses on
fully anisotropic d=3 hierarchical lattices �48� may yield ad-
ditional phase transition phenomena.
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