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Unidirectional invisibility of a PT -symmetric optical system is of great interest, but challenging as well since
it is infeasible to fulfill it through wide optical frequency ranges in all angular directions. Accordingly we study
reflectionless and invisible patterns in the TE and TM modes of an optical slab system consisting of an adjacent
or separated pair of balanced gain and loss layers with a gap. We provide a comprehensive study of one of the
simplest experimentally accessible examples of a unidirectionally reflectionless and invisible PT -symmetric
optical slab system. We obtain the physically optimal conditions for the realization of these phenomena. We
derive analytic expressions, and show that only certain gain amounts restricted to take values between certain
minimum and maximum values give rise to uni- or bidirectionally invisible configurations. The size of gap
decides the measure of reflectionlessness and invisibility parameters, especially on gain value and incident angle.
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I. INTRODUCTION

Since the first debut of PT -symmetric quantum mechanics
[1], there has been tremendous effort towards understanding
the non-Hermitian operators which give rise to real energies.
In this respect, psedo-Hermiticity [2] has revealed numer-
ous mysteries which found many substantial applications
especially in quantum field theories [3], Lie algebras [4],
and optical and condensed matter systems [5–12]. It is a
prominent feature of a PT -symmetric Hamiltonian that the
potential associated with it obeys V (x) = V �(−x) [1,5,8,9].
In this respect, realizing complex PT -symmetric potentials
in the realm of optics is achieved by the formal equivalence
between the quantum mechanical Schrödinger equation and
the optical wave equation derived from Maxwell’s equations.
Optics is the field that can provide a fertile ground where
PT -related notions including the nonreciprocal responses, the
power oscillations, optical transparency, optical solitons, and
unidirectional invisibility can be implemented and experimen-
tally investigated [5–7]. By exploiting optical modulation of
the refractive index in the complex dielectric permittivity plane
and engineering both optical absorption and amplification,
PT -symmetric optical systems can lead to a series of intrigu-
ing optical phenomena and devices, such as dynamic power
oscillations of light propagation, coherent perfect absorber
lasers [13–15], and unidirectional invisibility [5,10,11].

It is revealed that the evolution of parity-time symmetry
becomes measurable through the quantum-optical analog.
An interesting phenomenon named unidirectional invisibility
was theoretically proposed at an exceptional point where
amplitudes of the real and imaginary parts of the modu-
lated refractive index are identical, and PT symmetry is
spontaneously broken, in parity-time metamaterials. Inspired
from this idea we investigate the feasibility of realizing
unidirectional reflectionlessness and invisibility properties of
a PT -symmetric optical structure by means of an optically
active real material using the impressive power of the transfer
matrix in the framework of quantum scattering formalism.
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In this context, it is presented that spectral singularities and
unidirectional invisibility are leading issues encountered in
scattering states of electromagnetic fields [16–21]. The role of
PT symmetry in the context of unidirectional indivisibility is
similar to its role in the study of spectral singularities [22].

In a scattering problem, all the scattering data are contained
in the transfer matrix [23]. It is highly advantageous and thus
more preferable rather than the scattering matrix due to its
composition property. It is a magnificent feature of the transfer
matrix that exploits spectral singularities and invisibility of
electromagnetic fields interacted with an optically active
medium [13–15,18]. Spectral singularities correspond to zero
with resonance states giving the real and positive energies
[16,17]. They produce purely outgoing waves and have
connection with the lasing threshold conditions. However,
invisibility is the point that raised the most curiosity about
the transfer matrix, and requires a lot of work to do.

Studies about the invisibility problem in literature is
twofold. On one side, one exploits the beauty of transformation
optics and stunning competency of metamaterials [24,25]. This
approach employs the truth that the object being invisible is
to be concealed behind an artificially manufactured material
[26]. The complication in the process of fabrication on
account of geometrical requirements and challenges in the
applicability process highlights the second approach benefited
from interferometric methods heading the transfer matrix,
which has found a growing interest in recent years [19–22,27–
36].

In [37], the effect of oblique incidence directed upon an
exponential potential region on the property of invisibility
is investigated. In [15], we thoroughly studied the spectral
singularities and coherent perfect absorption (CPA) features in
the oblique TE and TM modes of a PT -symmetric planar slab
system that consists of a pair of balanced gain and loss layers
of thickness L separated by a distance s � 0. We showed the
optimal conditions of realizing a CPA laser due to the power of
transfer matrix formalism. In the present article we conduct a
comprehensive study of unidirectional reflectionlessness and
invisibility in the oblique TE and TM modes of the same
system to unveil the intriguing traits of the transfer matrix as
the complement to [15]. Our system is depicted in Fig. 1.
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FIG. 1. TE (left) and TM (right) modes of a slab system consisting of a pair of loss and gain layers of thickness L that are placed a distance
s apart in vacuum. Roman numerals I, II, III, IV , and V , respectively, label the regions of the space corresponding to z < 0, 0 < z < L, L <

z < L + s, L + s < z < 2L + s, and z > 2L + s. II and IV , respectively, correspond to the gain and loss layers while I, III , and V represent
the vacuum.

Our analysis of a PT -symmetric slab system in its
TE and TM modes reveals all possible configurations of
this system that support unidirectional reflectionlessness and
invisibility. In order to determine the practically most desir-
able choices among these, we calculate complete solutions
and schematically demonstrate their behaviors using various
parameter choices. This provides valuable information about
unidirectional reflectionlessness and invisibility for a possible
experimental realization of a PT -symmetric slab system.

In particular, we obtain analytic expressions for reflection-
less and invisible configurations, and examine the behavior of
right and left reflection amplitudes for the TE and TM waves.
We explicitly show that optimal control of parameters such as
gain coefficient, incident angle, slab thickness, and gap width
give rise to a desired outcome of achieving a wide wavelength
range of unidirectional reflectionlessness and invisibility. In
fact, we provide concrete sounding grounds that reveal the
range of gain coefficient to be restricted between minimum
and maximum values.

II. TE AND TM MODES OF A PARALLEL PAIR OF SLABS

Consider the two-layer gain-loss slab system with a gap
between gain and loss regions as sketched in Fig. 1. Assume
that our problem is one-dimensional and complex refractive
indices identifying gain and loss regions of space, respectively,
by n2 and n4 are z dependent. This optically active system
obeys the Maxwell’s equations in time-harmonic forms [39]
and therefore leads to a couple of TE and TM mode solutions
of the Helmholtz equations, respectively, in the form,

[∇2 + k2zj (z)] �Ej (�r) = 0, �Hj (�r) = − i

kZ0

�∇ × �Ej (�r),

(1)

[∇2 + k2zj (z)] �Hj (�r) = 0, �Ej (�r) = iZ0

kzj (z)
�∇ × �Hj (�r),

(2)

where �r := (x,y,z) symbolizes the Cartesian coordinate sys-
tem, k := ω/c is the wave number, Z0 := √

μ0/ε0 is the

impedance of the vacuum, c := 1/
√

μ0ε0 is the speed of light
in vacuum, and ε0 and μ0 are, respectively, the permittivity and
permeability of the vacuum. Here the subindex j = 1,2,3,4,
and 5 represents the regions of space depicted in Fig. 1. The
function zj (z) is given by

zj (z) := n2
j , for z ∈ zj . (3)

We observe that n1 = n3 = n5 = 1 and all denotes the vacuum.
We remark that the indice j in the field vectors denotes the
field components in the specified j th region of space.

It is the demonstrative feature of transverse electric (TE)
and transverse magnetic (TM) waves that they correspond to
the solutions of (1) and (2) for which �E(�r) and �H (�r) are,
respectively, parallel to the surface of the slab, which is aligned
along the y axis. Suppose that the plane wave is incident on
the gain-loss slab system with an angle θ ∈ [−90◦,90◦] from
the left-hand side (see Fig. 1). Thus wave vector �k has the
components in the x-z plane denoted by kx and kx , respectively,
as follows:

kx := k sin θ, kz := k cos θ. (4)

In this geometrical setup, the electric field for the TE waves
and the magnetic field for the TM waves are, respectively,
given by

�Ej (�r) = E j (z)eikxx êy, �Hj (�r) = H j (z)eikxx êy, (5)

where êx,êy, and êz are, respectively, the unit vectors along
the x, y, and z axes, and E j and H j are solutions of the
Schrödinger equation,

− ψj ′′
(z) + vj (z)ψj (z) = k2ψj (z), z /∈ {0,L,L+s,2L+s},

(6)

for the potential vj (z) := k2[1 + sin2 θ − zj (z)]. Because
vj (z) is a constant potential in the j th division of relevant
space, we can easily solve (6) to obtain

ψj (z) := aj eik̃j z + bj e−ik̃j z for z ∈ zj , (7)
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TABLE I. Components of the TE and TM fields in Cartesian
coordinates. Here E j (z) and H j (z) are given by the right-hand side
of (7), and F j (z) and T j (x,z) are, respectively, defined by (11)
and (12).

TE fields TM fields

Ej
x = Ej

z = Hj
y = 0

Ej
y = E j (z) eikxx

H j
x = −F j (z)

Z0
T j (x,z)

Hj
z = sin θ eikx xE j (z)

Z0

Ej
y = Hj

x = Hj
z = 0

Ej
x = Z0 F j (z)

zj (z) T j (x,z)

Ej
z = −Z0 sin θ eikx xH j (z)

zj (z)

Hj
y = H j (z) eikxx

where aj and bj , with i = 1,2,3,4,5, are complex valued
amplitudes, possibly k dependent, and

k̃j := k

√
n2

j − sin2 θ = kzñj , ñj :=
√

n2
j − sin2 θ

cos θ
. (8)

Substituting (5) in the second equation in (1) and (2),
we can find the magnetic field for the TE waves and the
electric field for the TM waves inside and outside of the slabs.
We then impose the appropriate boundary conditions for the
problem to relate the coefficients aj and bj . These amount to
the requirement that the tangential components of �E and �H
must be continuous functions of z at z = 0, z = L, z = L + s,
and z = 2L + s. Table I gives explicit expressions for the
components of the electric and magnetic fields, and relation
(9) exhibits the corresponding set of boundary conditions in
compact form,

aj e
ik̃j ξ±bj e

−ik̃j ξ = [uj+1](1∓1) c
2 {aj+1e

ik̃j+1ξ ± bj+1e
−ik̃j+1ξ },

(9)

where ξ takes values at boundaries z = 0,L,L + s and 2L + s,
and

c :=
{

+1 for odd layers

−1 for even layers.
(10)

They involve the following quantities:

F j (z) := aj eik̃j z − bj e−ik̃j z for z ∈ zj , (11)

T j (x,z) := ñj e
ikxx cos θ, (12)

uj := ñj

n�
j

, (13)

� :=
{

0 for TE waves,

2 for TM waves.
(14)

III. TRANSFER MATRIX FORMALISM

Scattering properties of any multicomponent system can be
best understood by means of transfer matrix formalism. The
advantage of using the transfer matrix in a multilayer system
lies in the fact that its composition property lets the resultant
transfer matrix be figured out in terms of individual matrices
that comprise the multilayer system. For our two-layer system
[15], the transfer matrix can be described as[

a3

b3

]
= M1

[
a1

b1

]
,

[
a5

b5

]
= M2

[
a3

b3

]
,

[
a5

b5

]
= M

[
a1

b1

]
,

where M1, M2 are 2 × 2 matrices corresponding to the
slabs placed in regions II and IV , and M = [Mij ] is the
transfer matrix of the composite system. They all satisfy the
composition property M = M2M1. The transfer matrix can
also be expressed by means of (right and left) reflection and
transmission coefficients [23] via

M =
(

T − RlRr

T
Rr

T

−Rl

T
1
T

)
. (15)

Reference [28] gives an explicit expression for M1. We can
easily compute M2 using this expression and the transfor-
mation property of the transfer matrices under translations

z
Ta−→ z − a which has the form [31],

M11
Ta−→ M11, M22

Ta−→ M22,

M12
Ta−→ e−2iakzM12, M21

Ta−→ e2iakzM21.

With M1 and M2 computed we can determine M using
M = M2M1. Components of this matrix satisfy the symmetry
relations in [38]

M11
PT←→ M∗

22, M12
PT←→ −M∗

12, M21
PT←→ −M∗

21,

and are described as follows:

M11 = cos a2 cos a4[1 + i u
+
2 tan a2 + i u

+
4 tan a4 + (u−

2 u
−
4 e−2ikzs − u

+
2 u

+
4 ) tan a2 tan a4]e−2ia0 ,

M12 = cos a2 cos a4[i u
−
2 tan a2 + i u

−
4 tan a4e

−2ikzs + (u+
2 u

−
4 e−2ikzs − u

−
2 u

+
4 ) tan a2 tan a4]e−2ia0 ,

(16)
M21 = − cos a2 cos a4[i u

−
2 tan a2 + i u

−
4 tan a4e

2ikzs − (u+
2 u

−
4 e2ikzs − u

−
2 u

+
4 ) tan a2 tan a4]e2ia0 ,

M22 = cos a2 cos a4[1 − i u
+
2 tan a2 − i u

+
4 tan a4 + (u−

2 u
−
4 e2ikzs − u

+
2 u

+
4 ) tan a2 tan a4]e2ia0 ,

where for j = 1,2,3,4,5 we have introduced

aj := kzLñj , u
±
j := 1

2

(
uj ± u

−1
j

)
,

and singled out the identification a1 = a3 = a5 := a0. The
transfer matrix (15) gives rise to many intriguing phenomena.

We already studied spectral singularities in [15]. In this
paper we focus on another fascinating feature, unidirectional
reflectionlessness and in turn invisibility, which can be seen
directly from the form of the transfer matrix. We observe
distinct cases from the transfer matrix (15) knowledge as
follows [19]:
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(1) If Rl = 0 and Rr �= 0, then the prescribed potential
is called “reflectionless from left.” This in turn implies that
M12 �= 0 together with M21 = 0.

(2) If Rr = 0 and Rl �= 0, then the potential given is called
“reflectionless from right.” This condition yields that M21 �= 0
together with M12 = 0.

(3) If the potential which is reflectionless from left comes
along with the situation T = 1, the potential is named
“invisible from left.” This condition implies M11 = M22 = 1
in addition to the results in case (1).

(4) Likewise if the potential is reflectionless from right,
then it is named “invisible from right.” Accordingly this
condition implies M11 = M22 = 1 in addition to the results
in case (2).

We analyze all these cases alternately in the following
sections.

IV. UNIDIRECTIONALLY REFLECTIONLESS
POTENTIALS

We realize that the conditions Rl = 0 and Rr = 0 give rise
to the following pair of equations:

iu−
2 tan a2 + iu−

4 tan a4e
±2ikzs

∓ (u+
2 u

−
4 e±2ikzs − u

−
2 u

+
4 ) tan a2 tan a4 = 0, (17)

where the equation with the upper sign belongs to Rl = 0 and
the one with the lower sign is relevant to Rr = 0. Notice that
these two relations are the negations of each other if one desires
to emanate the unidirectional reflectionlessness.

A. Unidirectional reflectionlessness: A perturbative
analysis approach

We realize that (17) is sufficient to provide the necessary
conditions for unidirectional reflectionlessness. It is therefore

needed to further reduce it to get a better understanding of the
physical parameters that generate the desired unidirectionally
reflectionless potentials. Consider the left (right) reflectionless
situation. This case leads to a constraint on transfer ma-
trix components given by M21 = 0 (M12 = 0) and M12 �= 0
(M21 �= 0). Thus, one obtains the equation,

i[u−
2 tan a2+u

−
4 tan a4 cos(2kzs)−u

+
2 u

−
4 tan a2 tan a4 sin(2kzs)]

= ±[u−
4 tan a4 sin(2kzs) + (u+

2 u
−
4 cos(2kzs)

− u
−
2 u

+
4 ) tan a2 tan a4], (18)

where again the upper (lower) sign denotes the left (right)
reflectionless situation while each of which requires the
invalidity of the other equation. For simplicity, we first consider
the special case of thePT -symmetric bilayer system satisfying
s = 0. Therefore, (18) reduces to a simpler form,

i[u−
2 tan a2 + u

−
4 tan a4] = ±(u+

2 u
−
4 − u

−
2 u

+
4 ) tan a2 tan a4.

(19)

Equality can be stated more clearly in an expanded form as
follows:

(u4 ∓ 1)

(u4 ± 1)
e2ia4 = (u2 ± 1)(u4 − u2)e2ia2 + (u2 ∓ 1)(u2 + u4)

(u2 ± 1)(u2 + u4)e2ia2 + (u2 ∓ 1)(u4 − u2)
,

(20)
of which the actual solution for the left (right) reflectionless-
ness is obtained by means of distracting the counterpart of (20).
It may be of interest to point out the analogy of this expression
with the spectral singularity relation of the same optical system
as described in [15] except for the factor (u2 ± 1) in the spectral
singularity case now turns to (u2 ∓ 1) and vice versa. For
our PT -symmetric bilayer system whose reflectionlessness
condition is given in (20), we identify the following:

ñ := ñ∗
4 = ñ2, u := u∗

4 = u2, a := a∗
4 = a2. (21)

Therefore, (20) comes down to

e2ia∗ = [ñ∗ ± (n∗)�]

[ñ∗ ∓ (n∗)�]

{e2ia[ñ∗n� − ñ(n∗)�](ñ ± n�) + [ñ(n∗)� + ñ∗n�](n� ∓ ñ)}
{e2ia[ñ∗n� + ñ(n∗)�](ñ ± n�) + [ñ∗n� − ñ(n∗)�](n� ∓ ñ)} . (22)

To get a concrete understanding of (22), we describe the real
and imaginary parts of n as η and κ , respectively, such that
n = η + iκ . For most materials of concern, one does have

|κ| 
 η − 1 < η. (23)

Thus, in this limit of refractive index components one can
safely write down the approximations,

η̃ ≈ sec θ
√

η2 − sin2 θ, κ̃ ≈ sec θ η κ√
η2 − sin2 θ

, (24)

in the leading order of κ . Furthermore, we employ the
definition of gain coefficient g, which is a physically applicable
parameter, as given by

g := −4πκ

λ
, (25)

in the expression of a (21). Thus, one can restate a as
a = a0η̃ − i

g̃L

2 with g̃ := ηg√
η2−sin2 θ

. Therefore, the ultimate

physical consequence of (22) can be deduced by splitting real
and imaginary parts. Luckily, the real part of the expression
cancels out and the remaining imaginary part yields

γ�{±α� cos(2a0η̃) − sin(2a0η̃)}
= α�{sinh(g̃L) ± γ� cosh(g̃L)}, (26)

where the parameters α� and γ� are described as follows:

α� := 2κ̃σ�

η̃2 − η2�
, γ� := 2η̃η�

η̃2 + η2�
,

with σ� providing great convenience in notations,

σ� :=
{

1 for � = 0,

2 sin2 θ − η2 for � = 2.

One can figure out the gain coefficient up to the leading
order of κ , which leads to a unidirectionally reflectionless
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FIG. 2. Plots of gain coefficient g as a function of wavelength
λ corresponding to TE and TM wave solutions of a PT -symmetric
bilayer in (27), which gives the uni- and bidirectionally reflectionless
potential configurations at incident angle of 30◦. Thick dashed blue
curves represent gain values that yields the left reflectionless case,
while thin solid red curves the right reflectionless situation which are
excluded from the left reflectionless situation for the case of only the
left reflectionless case.

configuration, from (26) as follows:

g ≈
√

η2 − sin2 θ

ηL
ln

[A∓ −
√
A2∓ + (η̃2 − η2�)2

(η̃ ∓ η�)2

]
, (27)

where

A∓ := η̃η�(η̃2 − η2�) sin(2a0η̃)

κ̃σ�

∓ 2η̃η� cos(2a0η̃).

But notice that not all values of g satisfying (27) gives rise to
a left (right) reflectionless configuration. One must account
for the excluded points arising from the invalidity of the
counterdirection reflectionlessness in (19). To get a physical
meaning of the expressions in (27) depending on various
parameters, we refer to Figs. 2–5. In Fig. 2, TE and TM
plots of the gain coefficient g as a function of wavelength
λ obeying left (right) reflectionlessness are displayed for the
PT -symmetric bilayer which contains the Nd:YAG crystals
[40] with specifications,

η = 1.8217, L = 10 cm, θ = 30◦. (28)

In these graphs thin solid red curves establish the points
that constitute the right zero-reflection amplitude situations
whereas thick dashed blue curves form up the left zero-
reflection amplitudes. Obviously, bidirectional reflectionless-
ness occurs provided that both curves overlap. In these
graphs one can safely declare that nonoverlapping single
graphs denote unidirectional reflectionlessness since we can
explicitly see all alternate conditions. Therefore, we will use
this convention for the rest of the paper. We observe that
only a certain periodically determined range of wavelengths
allow uni- or bidirectional reflectionlessness. In fact, curves
that belong to the left and right zero-reflection amplitude
curves never cross each other except for zero gain value
such that the actual curves of gain coefficients for each
curve determine the unidirectional reflectionlessness above
the positive g axes. However, one cannot precisely determine
the actual wavelength range for extremely small values of
gains separately, therefore, in a moderate wavelength range,
curves for the left and right zero-reflection amplitude situations
seem to coincide after some gain values while we reduce its
amount, i.e., they get closer to each other in such a way that
they appear to be overlapping each other. As we increase
the precision of measurement, bilateral reflectionlessness

FIG. 3. Plots of gain coefficient g as a function of wavelength λ at
various incidence angles, which show left side reflectionlessness for
TE and TM wave solutions, respectively, of PT -symmetric Nd:YAG
bilayer in (27).

turns into unidirectional reflectionlessness. This realization is
reflected in the decimal parts of the wavelength. For example,
if we are sensitive to thousandths after the decimal point, only
gain values g � 0.3 cm−1 for the TE mode and g � 0.35 cm−1

for TM are allowed for the same parameters of our choice in
(28). If the sensitivity of measurement decreases so that only
tenths or hundreds after the decimal point of wavelengths
are measured, then required gain values for unidirectional
reflectionlessness gets larger than about 0.8 cm−1.

In Fig. 3, TE and TM graphs of gain coefficients as
a function of wavelength for various incidence angles are
shown for the left reflectionless case. In these figures we do
not explicitly show the excluded curves arising from right
reflectionlessness for the clarification purpose, but depending
on the precision of measurement they can be shown around
the sides of each curve. Again periodic structures leading to
reflectionlessness are observed clearly for each angle. Also,
wavelength range that leads to reflectionlessness increases
when the angle of incidence increases. We observe that once
the incident wave angle is increased, the allowed wavelength
range shifts to the left (for wavelengths less than resonance
wavelength) and right (for those greater than resonance
wavelength) for each periodic entity, and the peak of the curve
and thus the required gain value is slightly lowered for the TE
case. In the TM case, Brewster’s angle plays a special role at
which the peak takes the minimum value and then increases
with the increase of angle above Brewster’s angle. This shows
that incidence angles near the Brewster’s angle are favorable
for unidirectional reflectionlessness in the TM mode.

In Fig. 4, the role of thickness of the bilayer slab on the
gain coefficient and wavelength graph is displayed for the
left TE and TM reflectionless cases. We again assume that
excluded points (due to right reflectionlessness) are intended
although they are not explicitly shown on graphs. Again peri-
odic structures leading to unidirectional reflectionlessness are
observed clearly for each slab thickness. We see that required

FIG. 4. Plots of gain coefficient g as a function of wavelength λ

at various slab thicknesses at θ = 30◦, which show left reflectionless-
ness for TE and TM wave solutions, respectively, of PT -symmetric
Nd:YAG bilayer crystals in (27).
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FIG. 5. Plots of gain coefficient g as a function of incident angle θ for TE and TM wave solutions, respectively. Blue dashed curves
represent left zero-reflection amplitude while red solid curves represent right zero-reflection amplitude. Brewster angle θb is clearly seen in the
last two figures in the TM case.

gain value decreases with the increase of thickness, but the
range of wavelength allowing reflectionlessness reduces.

In Fig. 5, the dependence of the gain coefficient on the
incident angle is shown for the left and right zero-reflection
situations corresponding to both TE and TM cases. In these
graphs we use slabs with L = 10 μm at wavelength λ =
808 nm for a better view. For the TE case, we see an almost

steady periodic behavior with the rise of angles, however, the
gain coefficient gets minimum value at Brewster’s angle in the
TM case. It is noted that the range of gain coefficients are most
obtained around incident angles θ = 0◦.

We next focus on the situation of the PT -symmetric two-
layer slab where there is a gap between balanced gain and loss.
Equation (18) leads to

(u4 ∓ 1)

(u4 ± 1)
e2ia4 = (e2ia2 − 1)

[(
u2

2 − 1
)
(u4 ± 1) − (

u2
2 + 1

)
(u4 ∓ 1)e2ikzs

] ∓ 2u2(u4 ∓ 1)e2ikzs(e2ia2 + 1)

(e2ia2 − 1)
[(

u2
2 − 1

)
(u4 ∓ 1) − (u2

2 + 1)(u4 ± 1)e2ikzs] ∓ 2u2(u4 ± 1)e2ikzs(e2ia2 + 1)
. (29)

In view of the identifications (21) one gets the expression for (29)

e2ia∗ = (e2ia − 1)[(ñ2 − n2�)(ñ∗ ± (n∗)�)2 − (ñ2 + n2�)(ñ∗2 − (n∗)2�)e2ikzs] ∓ 2ñn�(ñ∗2 − (n∗)2�)e2ikzs(e2ia + 1)

(e2ia − 1)[(ñ2 − n2�)(ñ∗ ∓ (n∗)�)2 − (ñ2 + n2�)(ñ∗2 − (n∗)2�)e2ikzs] ∓ 2ñn�(ñ∗2 − (n∗)2�)e2ikzs(e2ia + 1)
.

Using the complex refractive index n = η + iκ with condition (23), the approximations (24) and (25) and the definition of a,
one obtains a complex relation whose real and imaginary parts up to the leading order of κ are, respectively, given by

[(1 − cos 2kzs) − α�γ� sin 2kzs] cosh(g̃L) ± [γ�(1 − cos 2kzs) − α� sin 2kzs] sinh(g̃L)

= [(1 − cos 2kzs) − α�γ� sin 2kzs] cos 2a0η̃ ± [α�(1 − cos 2kzs) + γ� sin 2kzs] sin 2a0η̃, (30)

[sin 2kzs − α�γ�(1 + cos 2kzs)] cosh(g̃L) ± [γ� sin 2kzs − α�(1 + cos 2kzs)] sinh(g̃L)

= [sin 2kzs − α�γ�(1 + cos 2kzs)] cos 2a0η̃ ± [α� sin 2kzs + γ�(1 + cos 2kzs)] sin 2a0η̃. (31)

Notice that once s = 0, (30) disappears and we obtain just the imaginary part which is reduced to the simplified form in (26).
For s �= 0, Eqs. (30) and (31) yield the same equation in the form,

[tan kzs − α�γ�](cosh(g̃L) − cos 2a0η̃) = ∓[(γ� tan kzs − α�) sinh(g̃L) − (α� tan kzs − γ�) sin 2a0η̃]. (32)

We stress out the fact that upper and lower equations
point out the conditions for left and right zero-reflection
coefficients and each one is the negation of the other for the
corresponding unidirectional reflectionlessness. To reveal the
physical meaning of these equations in (32) for nonzero s, or
(30) and (31) including the case s = 0, one can plot the gain
coefficient with respect to the parameters of the wavelength,
separation between gain and loss, and angle of incidence
regarding various cases. But we have to take into consideration
excluded values stemming from the zero condition of the
counterdirection.

One can analyze Eqs. (30) and (31) for all s values,
or just (32) for nonzero s pictorially, corresponding to the
PT -symmetric case with a gap. In Figs. 6–8, the gain
coefficient via wavelength graphs belonging to the co-called
constructive, destructive, and generic cases are clearly seen. If

we define

s0 := π

2kz

= λ

4 cos θ
, (33)

so that even integer values of s/s0 specify the constructive
configurations, odd integer values specify the destructive con-
figurations and values apart from these two cases correspond to
the generic cases. In Fig. 6, s/s0 = 20 for the PT -symmetric
Nd:YAG gain-loss system with parameters in (27), and thus
corresponds to constructive cases. We immediately notice
that this case yields the same situation as the gapless one in
Fig. 2. In fact, curves identifying allowed gain values for the
left and right zero-reflection situations never intersect each
other above the positive g axis. It is just a matter of precision
to discriminate the right and left zero-reflection curves. Since
measurement cannot be performed at the desired level, our
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FIG. 6. Plots of gain coefficient g as a function of wavelength
λ corresponding to left and right reflection-zero TE and TM wave
solutions for the case of PT -symmetric Nd:YAG layers with a gap
in (27). Thick dashed blue curves and thin solid red curves represent
gain values that yield unidirectional reflectionlessness from left and
right, respectively, while solid green curves indicate bidirectionally
reflectionless points.

system would appear to be reflectionless for some small
positive gain values up to a certain value. For example, in
Fig. 6, the thick dashed blue curve (thin red solid curve)
with g � 0.35 cm−1 for TE waves and g � 0.30 cm−1 for
TM waves represents the allowed gain values for left (right)
reflectionlessness up to thousands of a nanometer-distance
wavelength measurement. Thus, the green curve turns out
to be the bidirectionally reflectionless case. As we increase
the sensitivity of our measurement, the allowed gain values
drop off. It is seen that TM solutions give rise to a better
reflectionless situation considering the TE case.

In Fig. 7, a generic case with s/s0 = 20.5 (upper figure)
and s/s0 = 21.5 (lower figure) with the same parameters as the
constructive case is displayed. It is manifest that reflectionless
potentials occur in prescribed ranges of wavelengths with
a periodic structure. Notice that gain values requiring the
reflectionlessness considerably lower and minimum gain
values move along the dashed blue curves once we move
from s/s0 = 20.5 to s/s0 = 21.5. We also note that gain values
requiring left reflectionlessness is relatively much smaller than
ones for right reflectionlessness. Thus, in this configuration it
is easy to perform left reflectionlessness.

FIG. 7. Plots of gain coefficient g as a function of wavelength λ

corresponding to generic left and right reflection-zero TE and TM
wave solutions for the case of PT -symmetric layers with a gap with
parameters in (27). Thick dashed blue curves and thin solid red curves
represent left and right reflectionlessness at noncoincident points. In
these plots, upper and lower figures correspond to s/s0 = 20.5 and
s/s0 = 21.5, respectively.

FIG. 8. Plots of gain coefficient g as a function of wavelength λ

corresponding to destructive left and right reflection-zero TE and TM
wave solutions for the case of PT -symmetric Nd:YAG crystal layers
with a gap corresponding to s/s0 = 20.99 with parameters in (27).
In these figures again the thick dashed blue curves and thin solid red
curves represent gain values that yield zero-reflection curves from
left and right, respectively.

In Fig. 8 one attains a very small value of gain at an almost
very close neighborhood to the destructive case with s/s0 =
20.99. Notice that left reflectionlessness is not observed while
we have a perfect right reflectionlessness at very small gain
values. At exact odd integer values of s/s0 corresponding
to a destructive configuration, no positive gain value can be
obtained for both left and right reflectionlessness; that is why
the best way to choose a good right reflectionless system is
to choose a gap width which is very close to the destructive
configuration case. Finally, notice that the wavelength range of
left and right reflectionless situations periodically interchange
around the odd integer values of s/s0 in Fig. 7.

In Fig. 9, we analyze the behavior of gain coefficients with
respect to s/s0 which is a measure of gain-loss separation
distance which are depicted at various incident angles. Notice

FIG. 9. Plots of gain coefficient g as a function of gain-loss
separation measure s/s0 corresponding to TE and TM wave solutions
for the case of PT -symmetric Nd:YAG layers with a gap at various
incident angles with parameters in (27). Thin solid red curves
represent right zero-reflection amplitude, while thick dashed blue
curves the left zero-reflection amplitude configurations. In these
plots, upper, middle, and lower rows specify incident angles of
θ = 0◦, θ = 45◦, and θ = 89◦, respectively.
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FIG. 10. Plots of gain-loss separation measure s/s0 as a function
of incidence angle θ corresponding to TE and TM wave solutions for
the case of PT -symmetric layers with a gap.

that constructive configurations occur at odd integer values
of s/s0 while destructive configurations occur at even integer
values of s/s0. We also realize that no unidirectional reflec-
tionlessness is observed at destructive configurations (i.e.,
for odd s/s0 values) for all angles, verifying our previous
observations. Also, at large angles very close to θ ≈ 90◦
again unidirectional reflectionlessness is only observed near
constructive configurations. The TE case yields a better result
in this sense. Constructive and generic cases verify our
previous observation that the best choice for reflectionlessness
is to pick a separation distance around odd integer values
of s/s0, i.e., required gain value lowers as we pass from
constructive to destructive configurations. We also learn from
these graphs that not all angles yields a reflectionless situation
at fixed wavelength and s/s0.

In Fig. 10, the behavior of angles on the separation distance
measure of s/s0 at fixed gain and wavelength is shown
for various angle ranges. In these plots, the PT -symmetric
gain-loss system with a gap is made out of Nd:YAG crystals
with thickness L = 1 cm, λ = 808 nm, and gain coefficient
of g = 0.4 cm−1. Notice again that the destructive case for all
angles never allows unidirectional reflectionlessness. At large
angles, only close surroundings of constructive cases give rise
to unidirectional reflectionlessness.

In Fig. 11 behavior of gain coefficients with respect to angle
of incidence is shown for the case of PT -symmetric Nd:YAG
layers with a gap with two different s values, s = 1.166 μm
and s = 1.397 μm corresponding to constructive and almost
destructive cases, respectively, for s/s0 = 5 and s/s0 = 5.99.
It is clearly seen that only certain incidence angles allow
reflectionless potentials. We remark that the most convenient
choice of angles for the constructive case are angles around
the valleys of grand patterns with two peaks. These angles
correspond to around θ = 30◦,60◦, and 90◦. Gain values at
large angles around θ ≈ 90◦ are quite small, which is more

favorable. For the almost destructive case, the favorable angles
shift around θ = 0◦,45◦,65◦, and 90◦. In these graphs, the
role of Brewster’s angle in the TM mode is shown that
both directional reflectionlessness occur at very small gain
values. Finally, these graphs clearly demonstrate that left
reflectionlessness is always achieved at small gain values
compared to the right one.

Finally, it is worth mentioning the effect of varying
thickness of gain (in turn, loss) slab(s). We verify similar
observations encountered in the PT -symmetric bilayer case
that lowering thickness results in a unidirectional reflectionless
situation for a wide-range wavelength at increased gain values.

B. Unidirectional reflectionlessness: Exact analysis

Based on the guiding light of the perturbative analysis,
we achieved the required gain values with the corresponding
wavelength range for the left and right reflectionlessness. We
can use this information to verify that our PT -symmetric
system is indeed unidirectionally reflectionless. Besides, it
is also quite natural to extract information directly from the
components of the transfer matrix since they give rise to deduce
the quantities |Rl|2 and |Rr |2 in light of the consequences of
the last subsection. In Fig. 12 one observes the graphs of |Rl|2
(thick dashed blue curve) and |Rr |2 (thin solid red curve) as
a function of wavelength λ for the PT -symmetric Nd:YAG
crystals with a gap possessing a constructive configuration
with s/s0 = 20 and L = 10 cm at incidence angle of θ = 30◦
for various gain values ranging from g ≈ 0.35 cm−1 to g ≈
1.5 cm−1. These graphs clarify that below the gain values g ≈
0.35 cm−1 only bidirectional reflectionlessness is observed,
and above this gain value, unidirectional reflectionlessness
originates, which verifies the results found in Fig. 6. If we still
increase the amount of gain unidirectional reflectionlessness
disappears and no reflectionlessness is observed, which verifies
Fig. 6. Notice that the best degree of reflectionlessness is
guaranteed just above the intersection points of right and left
zero-reflection amplitude curves. It is also worth expressing
that the reflectionless range of wavelength can be widened
considerably if the gain value is well adjusted (see the graphs
in the third row of Fig. 12).

In Fig. 13, the effect of gain coefficient on graphs of
|Rl|2 and |Rr |2 is displayed for constructive, generic, and
destructive configuration cases for the PT -symmetric gain-
loss system with a gap, which is made out of Nd:YAG
crystals with thickness L = 10 cm, and the wave is sent
out at λ = 807.9997 nm at angle of incidence θ = 30◦. It is
obvious that the required amount of gain for unidirectional
reflectionlessness is lowered in passing from constructive to
destructive cases. Left reflectionlessness is easier to achieve
compared to the right reflectionlessness. Above a certain
amount of gain value both reflectionless situations clear
away.

In Fig. 14, the dependence of |Rl|2 and |Rr |2 on incidence
angle is observed for the PT -symmetric Nd:YAG layers
with a gap. Gap width is taken to be s ≈ 4.782 nm and
the wave is sent out at λ = 807.9997 nm for the gain value
g = 13.44 cm−1. To clarify the situation, we employ gain
(loss) thickness of L = 100 μm. We see that not all incident
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FIG. 11. Plots of gain coefficient g as a function of incidence angle θ corresponding to TE and TM wave solutions for the case of
PT -symmetric layers with a gap. In these plots, we employ slab thickness L = 200 μm, wavelength λ = 808 nm, and s ≈ 1.166 μm (first
row) and s ≈ 1.397μm (second row).

angles lead to a uni- or bidirectional reflectionless situation,
but some discrete angles give rise to it. The best alternate is
obtained at angles around valleys of big patterns. Also, it is
worth seeing the effect of Brewster’s angle in TM, which yields
a perfect reflectionless situation.

In Fig. 15, we use different materials by changing the
refractive index η to see how |Rl|2 and |Rr |2 are affected.
For clarity, we use the PT -symmetric gain-loss system with
slab thickness L = 100 μm and gain-loss separation distance
s = 4.782 μm, and the wave is sent out at the angle θ = 30◦
and λ = 807.9997 nm with the gain value g = 9 cm−1. We
observe that no natural material with refractive indice η <

0.88 can be found to yield a reflectionless situation. Again
refractive indices form discrete values and although there could
be found good reflectionless situations at numerous refractive
index values, the best option is to use materials with refractive

indices near η ≈ 1 in the TE case, and η ≈ 0.578 and η ≈ 1
in the TM case.

V. UNIDIRECTIONAL INVISIBILITY

It is explicitly revealed that unidirectional reflectionlessness
imposes some constraints on the gain coefficient which is
restricted to lie within a certain wavelength range in a predeter-
mined angle of incidence. This is in fact an obligation arising
from the condition of unidirectional reflectionless potentials.
Thus, gain coefficient is limited to take values between some
minimum and maximum points. In addition, one needs a
further condition, and in turn constraint on the gain coefficient
if one desires invisibility. This case constricts the required
wavelength interval and reduces the range of gain coefficient
as apart from reflectionless configuration. The necessary
condition of M11 = M22 = 1 for invisibility gives rise to

cos a4{cos a2 − iu+
2 sin a2} + sin a4{[u−

2 u
−
4 e2ikzs − u

+
2 u

+
4 ] sin a2 − iu+

4 cos a2} = e−2ia0 .

This can be expressed in an expanded form as follows:

e2ia4 = 4u2u4e
i(a2+a4−2kzL) + (u4 + 1)2[(u2 − 1)2e2ia2 − (u2 + 1)2] − (

u2
2 − 1

)(
u2

4 − 1
)
e2ikzs(e2ia2 − 1)

(u4 − 1)2[(u2 − 1)2e2ia2 − (u2 + 1)2] − (
u2

2 − 1
)(

u2
4 − 1

)
e2ikzs(e2ia2 − 1)

.

This complex relation can be split into real and imaginary parts in a perturbative manner as performed in the above section to
yield

[
1 − cos 2kzs + γ 2

� (1 + cos 2kzs)
]

cos 2a0η̃ − (
1 − γ 2

�

)
(1 − cos 2kzs) cosh(g̃L) = γ 2

�

2
cos(2kzL), (34)

(
1 − γ 2

�

)
sin 2kzs[cos 2a0η̃ − cosh(g̃L)] + 2γ� sin 2a0η̃ + 2α�

(
1 − γ 2

�

)
sinh(g̃L) = γ 2

�

2
sin(2kzL). (35)

In Figs. 16–21, the behaviors of (34) and (35) on the invis-
ibility phenomenon at various angles and wavelength ranges
corresponding to constructive, destructive, and arbitrary cases
are explicitly displayed. In Figs. 16–18, invisibility patterns
corresponding to constructive configuration with s/s0 = 20

for various angles are shown for the PT -symmetric system
consisting of Nd:YAG crystals with slab thickness L = 10 cm.
In Fig. 16, incident angle is θ = 30◦. In this case, no left
invisibility is observed, and right invisibility is encountered
at the gain value of g ≈ 0.965 cm−1 in the TE case and g ≈
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FIG. 12. Plots of |Rl |2 (thick dashed blue curve) and |Rr |2
(thin solid red curve) as a function of wavelength λ corresponding
to TE and TM wave solutions for the case of PT -symmetric
Nd:YAG layers with a gap and thickness L = 10 cm at incident
angle θ = 30◦. Graphs are plotted for gain values g ≈ 0.35 cm−1,

g ≈ 0.60 cm−1, g ≈ 0.90 cm−1, g ≈ 1.2 cm−1, and g ≈ 1.5 cm−1

from top to down manner. It is clear that unidirectional reflection-
lessness occurs for gain values greater than some certain gain values
(graphs in last two rows), below which one observes bidirectional
reflectionlessness.

1.035 cm−1 in the TM case. Likewise, bidirectional reflection-
lessness is observed up to g ≈ 0.3 cm−1 in the TE case and
g ≈ 0.35 cm−1 in the TM case. Once the amounts of gain are
increased from these values, unidirectional reflectionlessness
is observed. Once the precision of measurements is increased,
the ranges of invisibility come down to the specified points
and only right and left reflectionless configurations stand
explicitly; see bottom figures in Fig. 16. We notice that varying
incident angle results in the curve of unity transmission to
move around the zero-reflection amplitude curves. In Fig. 17,
incident angle is slightly increased to the value of θ = 30.6◦.
This angle causes the right invisibility gain range to lie within
(0.3,0.55) cm−1 in the TE case and (0.35,0.62) cm−1 in the
TM case. Notice that bidirectional invisibility is observed
below these gain values. Likewise, left reflectionlessness is
seen at gain values higher than g ≈ 0.3 cm−1 in the TE case

FIG. 13. Plots of |Rl |2 (thick dashed blue curve) and |Rr |2 (thin
solid red curve) as a function of gain coefficient g corresponding to TE
and TM wave solutions for the case ofPT -symmetric Nd:YAG layers
with a gap. Graphs are plotted for gain-loss separations comprising
the constructive configuration with s/s0 = 20 (top row), the generic
configuration with s/s0 = 20.5 (middle row), and almost destructive
configuration with s/s0 = 20.99 (bottom row).

and g ≈ 0.35 cm−1 in the TM case, and right reflectionlessness
at gain values higher than g ≈ 0.55 cm−1 in the TE case and
g ≈ 0.62 cm−1 in the TM case. Again once the precision of
measurements is increased, the left invisibility in the TE case
and right invisibility in the TM case stand just at a single point
in the (λ,g) plane. In Fig. 18, the incident angle is slightly
increased to θ = 30.9◦. This time right invisibility gives its
place to left invisibility. Left invisibility in encountered at
the gain value of g ≈ 0.75 cm−1 for both TE and TM cases.
Bidirectional and unidirectional reflectionlessness is observed
in a similar manner. Top and bottom figures clearly show that
only perfect right invisible configurations occur between gain
values (0.35,0.75) cm−1 in the TE case and (0.3,0.75) cm−1

in the TM case even if the precision of measurement is
increased.

FIG. 14. Plots of |Rl |2 (thick dashed blue curve) and |Rr |2 (thin
solid red curve) as a function of incident angle θ corresponding to TE
and TM wave solutions for the case of PT -symmetric layers with a
gap.
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FIG. 15. Plots of |Rl |2 (thick dashed blue curve) and |Rr |2 (thin
solid red curve) as a function of refractive index η corresponding to
TE and TM wave solutions for the case of PT -symmetric layers with
a gap.

FIG. 16. Plots of gain coefficient g as a function of wavelength
λ corresponding to invisible TE and TM wave solutions of the
constructive configuration for the case of PT -symmetric layers with
a gap at angle of incidence θ = 30◦. In these plots, thin solid red
curves represent the right reflectionless configurations, dashed blue
curves the left reflectionless configurations, and thick green solid
curves the conditions for M11 = M22 = 1 as given in (34) and (35).

FIG. 17. Plots of gain coefficient g as a function of wavelength
λ corresponding to invisible TE and TM wave solutions of the
constructive configuration for the case of PT -symmetric layers with
a gap. In these graphs, thin solid red curves represent the right
reflectionless configurations, dashed blue curves the left reflectionless
configurations, and thick green solid curves the conditions for
M11 = M22 = 1 as given in (34) and (35).

In Fig. 19, invisibility patterns of generic configuration with
s/s0 = 20.5 are displayed for the incident angles of θ = 30◦
(top row) and θ = 30.32◦ (bottom row). We immediately
notice that required gain values scale down considerably,
and left zero-reflection amplitudes are always less than right
zero amplitudes. The curve for the unity-transmission case
locates evenly as the right zero-reflection amplitude. At
angle θ = 30◦, right invisibility is observed at gain values
of g ≈ 0.165 cm−1 in the TE case and g ≈ 0.225 cm−1 in
the TM case. The required gain values for bidirectional
reflectionlessness are less than g ≈ 0.0082 cm−1 in the TE
case and g ≈ 0.01 cm−1 in the TM case. But, the angle
θ = 30.32◦ lets the gain range of right invisibility increase
up to the amounts of g ≈ 0.11 cm−1 in the TE case and
g ≈ 0.175 cm−1 in the TM case. In this configuration, it is
hard to get left invisibility. Consequently, we understand that
right invisibility mostly occurs in the case of the TE mode
in almost all angles. Once the precision of measurement is

FIG. 18. Plots of gain coefficient g as a function of wavelength λ

corresponding to invisible TE and TM wave solutions for the case of
PT -symmetric layers with a gap. In these plots, thin solid red curves
represent the right reflectionless configurations, dashed blue curves
the left reflectionless configurations, and thick green solid curves the
conditions for M11 = M22 = 1.
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FIG. 19. Plots of gain coefficient g as a function of wavelength λ

corresponding to invisible TE and TM wave solutions of the arbitrary
configuration for the case of PT -symmetric layers with a gap
(s/s0 = 20.5). In these plots, thin solid red curves represent the right
reflectionless configurations, dashed blue curves the left reflectionless
configurations, and thick green solid curves the conditions for
M11 = M22 = 1 as given in (34) and (35).

increased, top figures do not yield invisibility, and bottom
ones still hold the right invisibility.

In Fig. 20, the invisibility pattern for the almost destructive
case with s/s0 = 20.99 corresponding to PT -symmetric
Nd:YAG layers with slab thickness of L = 10 cm is observed
at the incident angle of θ = 30◦. We see that required gain for
the zero-reflection amplitudes lowers significantly, especially
the left one. This results in achieving right invisibility range of
gain to take values from g ≈ 9 × 10−6 cm−1 in the TE case and
g ≈ 10−5 cm−1 in the TM case, up to an extended level. Also
there is one more point of right invisibility for both cases at gain
values of g ≈ 0.21 cm−1 in the TE case and g ≈ 0.27 cm−1 in
the TM case. As a consequence, no left reflectionlessness and
invisibilities are observed in this case. In the broad range of
wavelength, this case leads all three distinct curves to coincide
at the same wavelength values whereas producing only right
invisible configurations above certain gain values. But when

FIG. 20. Plots of gain coefficient g as a function of wavelength
λ corresponding to invisible TE and TM wave solutions of the
destructive configuration for the case of PT -symmetric layers with
a gap. In these plots, thin solid red curves represent the right
reflectionless configurations, dashed blue curves the left reflectionless
configurations, and thick green solid curves the conditions for
M11 = M22 = 1 in (34) and (35).

FIG. 21. Plots of gain coefficient g as a function of incidence
angle θ corresponding to invisible TE and TM wave solutions for the
case of PT -symmetric layers with a gap of s ≈ 1.167 μm. In these
plots, thin solid red curves represent the right reflectionless configu-
rations, dashed blue curves the left reflectionless configurations, and
thick green solid curves the conditions for M11 = M22 = 1 in (34)
and (35).

the precision is increased as in the above figures, right and left
invisibilities are distinguished.

In Fig. 21, reflectionlessness and invisibility patterns are
shown in the plane of incident angle and gain coefficient for
the materials of the PT -symmetric gain-loss system with a
gap. For clarity, we make use of quite small slab thickness
of L = 200 μm at wavelength λ = 808 nm, which leads to a
large amount of gain values. At fixed thickness L, gap value of
s and wavelength λ, not all angles, but a discrete finite number
of angles produce reflectionless and invisible situations. At the
prescribed value of s ≈ 1.167 μm, corresponding to s/s0 = 5,
small angles near θ = 0◦ we have right invisibilities on
large amount of gain. Also bidirectional invisibilities and
reflectionlessness are observed at the displayed values of
gain. Required gain values drop off incredibly when the
incident angle is adjusted well so that the valleys of pattern
at which the left zero-reflection curve forms up are favorable
for this purpose, which happens around θ = 30◦, θ = 60◦, and
θ = 90◦ for our case.

We now investigate the behavior of reflection and transmis-
sion amplitudes in view of these results. The following figures,
Figs. 22–24, demonstrate invisible wavelength ranges at
various angle and gain values. In Fig. 22, plots of |Rl|2, |Rr |2,
and |T |2 − 1 are shown as a function of wavelength λ

for incident angles of θ = 0◦,60◦, and θ = 85◦ for PT -
symmetric Nd:YAG crystals with thickness L = 1 cm, s = 0,
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FIG. 22. Plots of |Rl |2 (dashed blue curve), |Rr |2 (solid thin
red curve), and |T |2 − 1 (solid thick green curve) as a function of
wavelength λ corresponding to TE and TM wave solutions at various
angles for the case of PT -symmetric layers with a gap.

and gain coefficient g = 46.66 cm−1. We clearly see that
once the incident angle is small around θ = 0◦, the range of
wavelength producing invisibility increases, and unidirectional
reflectionlessness slightly occurs. When the incident angle
rises incredibly the width of wavelength range decreases for
invisibility.

In Fig. 23, dependence of |Rl|2, |Rr |2, and |T |2 − 1 on
wavelength is revealed for the cases of constructive, almost
destructive, and generic configurations. We again use Nd:YAG
crystals with slab thickness L = 10 cm for all configurations.
The top figure corresponds to the constructive case with gain
value of g = 0.7 cm−1 and s/s0 = 20. We see that point a is
the bidirectional invisibility point, point b is the left invisibility
point, and point c is the right invisibility point if one explores
invisibility within the wavelength range of 10 000ths. For a
wide range of wavelength, they all appear to be the same and
only one point leads to bidirectional invisibility. If we take a
look at the middle figure with gain value of g = 0.0031 cm−1

and s/s0 = 20.5 in the same range of wavelength we observe
that both points a and b are bidirectionally invisible points, and
around these points unidirectional reflectionlessness occurs.
Finally, if we adjust the gap amount to be s/s0 = 20.99 with
the corresponding gain value g = 0.00016 cm−1 so that the
almost destructive case arises, between points a and b appears
to be bidirectionally invisible. Further away from these points
leads to unidirectional reflectionlessness.

In Fig. 24, plots of |Rl|2, |Rr |2, and |T |2 − 1 as a function
of incidence angle θ are seen at parameter values of L =
10 cm, g = 0.0078 cm−1, and wavelength λ = 808 nm. We

FIG. 23. Plots of |Rl |2 (dashed blue curve), |Rr |2 (solid thin
red curve), and |T |2 − 1 (solid thick green curve) as a function of
wavelength λ corresponding to constructive, generic, and destructive
TE and TM wave solutions for the case of PT -symmetric layers
with a gap. The materials of PT -symmetric gain-loss system with
a gap is made out of Nd:YAG crystals with η = 1.8217, thickness
L = 10 cm.

notice that at fixed parameters, only certain prescribed angles
give rise to reflectionless and invisible configurations. In TE
case, angles around θ = 90◦ do not yield any reflectionless
and invisible patterns.

FIG. 24. Plots of |Rl |2 (dashed blue curve), |Rr |2 (solid thin red
curve), and |T |2 − 1 (solid thick green curve) as a function of incident
angle θ corresponding to TE and TM wave solutions for the case of
PT -symmetric layers with a gap.
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VI. CONCLUDING REMARKS

In this article, we analyzed the behavior of the
PT -symmetric bilayer and two-layer system in oblique TE and
TM cases corresponding to unidirectional reflectionlessness
and invisibility, and their optical realizations. We exploited
the power of the transfer matrix which emphasizes the
validity of boundary conditions arising from the solutions
directly coming from Maxwell’s equations. It is a direct
consequence of the transfer matrix that a single layer
consisting of just gain or loss cannot produce an invisible
configuration whereas the gain-loss system constituting a
two-layer pattern can. In our analysis we developed a method
which can yield invisibility at various angles for TE and TM
wave solutions. We also obtained necessary and sufficient
conditions leading to reflectionless and invisible solutions.
We showed that the separation between gain and loss
plays a crucial role in obtaining reflectionless and invisible
patterns.

We obtained that reflectionless and invisible patterns are
very sensitive to the incident angle, and occur only at specific
angles. Also, the amount of gain and gap value between gain
and loss regions determines the ascribed phenomena such
that optimal values of these parameters should be adjusted
in a given system if one desires reflectionless and invisible
situations. Unidirectional invisibility requires a certain range
of gain values at the predetermined system parameters.
Precision of measurement plays an important role since it
can split reflection and transmission amplitudes consistently;
whereas they were invisible before at the far wavelength range,
they may not be invisible at small ranges.
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