Repetition rate control in continuous-wave-pumped, passively Q-switched solid-state lasers

Alphan Sennaroglu, MEMBER SPIE
Huseyin Cankaya, MEMBER SPIE
Adnan Kurt
Koç University
Laser Research Laboratory
Department of Physics
Rumelifeneri, Sarıyer İstanbul 34450, Turkey
E-mail: asennar@ku.edu.tr

Abstract. We describe a technique for the adjustment and control of repetition rates in continuous-wave-pumped, passively Q-switched solid-state lasers. The method uses a movable intracavity lens to modify the mode matching and hence the gain of the laser beam per pass. The technique was applied to a diode-pumped Nd3+:YVO\textsubscript{4} laser passively Q-switched with a Cr4+:YAG saturable absorber at 1064 nm. At a fixed pump power of 5.4 W, we were able to continuously adjust the repetition rate between 13.8 and 25 kHz by translating an intracavity converging lens. We also demonstrate that by adjusting the lens position, the repetition rate can be kept at a desired value as the pump power varies. In particular, as the pump power was increased from 3.95 to 5.9 W, the lens position was varied by 0.91 cm to keep the repetition rate constant at 13.8 kHz. Rate-equation formalism was used to investigate the variation of the repetition rate as a function of lens position, and very good agreement was obtained between experiment and theory.

Subject terms: solid-state lasers; passively Q-switched lasers; saturable absorbers; neodymium lasers; repetition rate in passively Q-switched lasers.

Paper 060218R received Mar. 24, 2006; revised manuscript received Jul. 26, 2006; accepted for publication Aug. 1, 2006; published online Feb. 27, 2007.

1 Introduction

Over recent decades, considerable effort has been focused on the development of passively Q-switched solid-state lasers. In comparison with their actively Q-switched counterparts, passively Q-switched lasers offer the advantage of simpler system architecture and reduced cost, since all optical pulse shaping occurring inside the saturable absorber obviates the need for sophisticated electronics. Practical saturable absorbers suitable for passive Q-switching of solid-state lasers come in various forms. Examples include transition metal ion-doped crystals such as Cr4+-doped garnets1 or silicates,2 and semiconductor saturable absorbing mirror structures commonly referred to as SESAMs,3 among others. In all cases, the absorption of the saturable absorber decreases with increasing intensity, and if the second threshold condition is satisfied, a periodic train of pulses is generated from the resonator.4,5 To date, various aspects of passively Q-switched solid-state lasers have been explored. As an example, output pulse energies in excess of 100 mJ have been demonstrated in 1064-nm Nd:YAG lasers repetitively Q-switched with Cr4+:YAG crystals.6 In other studies, continuous-wave-pumped,7–10 passively Q-switched microchip lasers have been reported,7–10 generating subnanosecond pulses10 as short as 37 psec.

Let us consider continuous-wave-pumped, passively Q-switched solid-state lasers. An important issue that needs to be addressed in the design of practical systems has to do with the control of the pulse repetition rate. In general, the pulse repetition rate will depend on an interplay of many factors, including steady-state power gain in the laser crystal, passive losses of the resonator, small-signal loss of the saturable absorber, possibility of excited-state absorption, and the fluorescence lifetime of the gain medium. Factors such as absorption/emission cross sections, passive losses, small-signal loss of the saturable absorber, or fluorescence lifetime will be fixed for a particular choice of gain medium and saturable absorber. However, the power gain per pass inside the laser crystal will depend on the level of pumping and hence can cause undesirable variations in the pulse repetition rate as the pump power is changed. It is therefore important to devise a technique to control the pulse repetition rate against variations in the pump power.

In this paper, we propose a simple scheme for the control of the repetition rate in a continuous-wave pumped, passively Q-switched solid-state laser by using a movable intracavity lens. As the lens is translated inside the cavity, mode matching and hence the gain per pass will vary, and the repetition rate can be continuously adjusted. The technique can be used for two different applications: for adjusting the repetition rate of the laser at a constant pump power or for controlling the repetition rate at a desired value as the pump power changes. We have demonstrated the usefulness of this method for both cases in a diode-pumped Nd3+:YVO\textsubscript{4} laser passively Q-switched with a Cr4+:YAG saturable absorber at 1064 nm. At an incident diode power of 5.4 W, we were able to continuously adjust the repetition rate of the laser between 13.8 and 25 kHz. In a second experiment, we showed how the location of the lens should be varied to keep the repetition rate fixed at 13.8 kHz, as the pump power varies from 3.95 to 5.9 W. Finally, we used rate-equation formalism to model the variation of the repetition rate with lens position and obtained very good agreement between theory and experiment.
34 mW could be obtained with 3.05 W of incident pump shown in Fig. 1. Near lasing threshold, an output power of saturable absorber was placed near the output coupler, as was antireflection had a total length mm-long normal-cut AR-coated Cr4+:YAG saturable ab-
stage. Passive Q-switching was obtained by placing a 1.56-
temperature of the Cr4+:YAG crystal since previous studies showed that the saturation characteristics during pulsed excitation are independent of temperature between -60 and 90°C. The resonator was end-pumped by a diode-array (D) at 806 nm. The diode output was coupled via a waist of 287 μm inside the Nd3+:YVO4 crystal. The \(M^2 \) of the pump beam was measured to be 2.75. In the experiments, the cw power performance of the Nd3+:YVO4 laser was first characterized up to an incident pump power of 9.6 W, at which level as high as 1.43 W of cw output power could be obtained. Here, the intracavity lens was at a distance of \(d_f = 9.5 \) cm from the output coupler. The incident threshold pump power and the slope efficiency were measured to be 0.3 W and 16%, respectively.

In order to initiate passive Q-switching, the Cr4+: YAG saturable absorber was placed near the output coupler, as shown in Fig. 1. Near lasing threshold, an output power of 34 mW could be obtained with 3.05 W of incident pump power. Once above lasing threshold, a train of Q-switched pulses could be readily obtained. However, for the case where the intracavity lens position was fixed, the repetition rate and the pulse width of the output pulses varied with the incident pump power. Figure 2 shows the measured variation of the repetition rate as a function of the incident pump power. In these measurements, \(d_f \) was set to 9.5 cm. As the pump power is increased from 3.05 to 7.29 W, the repetition rate varied between 3.5 and 18.2 kHz. In the same pump power range, the pulse width remained near 45 ns.

In the next set of measurements, we demonstrated the use of the intracavity lens in continuously adjusting the repetition rate of the laser. Here, the diode pump power was kept constant at 5.4 W, and the intracavity lens was translated from \(d_f = 8.5 \) cm to \(d_f = 9.5 \) cm. As can be seen in Fig. 3(a), the repetition rate of the laser could be continuously varied from 25 to 13.8 kHz. We note that as the intracavity lens is translated, the spot sizes inside the gain medium and the saturable absorber both change and could lead to variations in the output pulse energy and output pulse width. In order to investigate this further, we also measured the dependence of the output pulse width [Fig. 3(b)] and the average output power [Fig. 3(c)] on the intracavity lens position. As can be seen in Fig. 3(b), when the intracavity lens was translated from \(d_f = 8.5 \) cm to \(d_f = 9.5 \) cm, the output pulse width decreased from 100 to 44 ns. Standard ABCD analysis of the cavity shows that when \(d_f \) is increased from 8.5 to 9.5 cm, the average spot size on the saturable absorber decreases from 145 to 108 μm, while the spot size inside the gain medium increases from 229 to 323 μm. The observed trend in the pulse width can be explained by noting that as the spot size on the saturable absorber decreases, stronger bleaching takes place. This further leads to faster build-up of the intracavity power and faster extraction of the stored energy, hence giving shorter output pulses. Furthermore, as can be seen in Fig. 3(c), the average output power increased from 43 to 158 mW due to the translation
of the lens, resulting in an increase of the corresponding energy per pulse from 1.7 (\(d_f=8.5\) cm, repetition rate =25 kHz) to 11.4 \(\mu\)J (\(d_f=9.5\) cm, repetition rate =13.8 kHz). Here, a qualitative explanation may be offered by examining how the mode area in the gain medium and the fractional power gain are modified by the intracavity lens position. We discuss this further in Sec. 3, after the repetition rate calculations.

The intracavity lens can also be used to stabilize the repetition rate at a fixed value as the pump power varies. As an example, Fig. 4 shows how the position of the lens must be adjusted in order to keep the repetition rate at 13.8 kHz for different diode pump power levels. As the pump power was increased from 3.95 to 5.9 W, the lens position was varied by 0.91 cm to keep the repetition rate fixed at 13.8 kHz. This set of data can be used to actively control the repetition rate of the laser against small power fluctuations by introducing a closed loop servo system to drive the lens. The latter was not taken up in the present study. At all pump power levels used, the output pulsewidth remained below 80 ns.

3 Analysis of the Repetition Rate Data

Rate equation formalism can be used to analyze the effect of the intracavity lens on the repetition rate of the cw passively Q-switched solid-state lasers. Once a Q-switched pulse depletes the gain and leaves the cavity, the next one starts building up from noise. After a sufficient pumping time, the accumulated gain becomes equal to the total unsaturated loss of the resonator, and pulse shaping again commences. Spuhler et al.\(^{10}\) showed that the pulse repetition rate \(f_{\text{rep}}\) which is the inverse of the time between consecutive pulses, can be calculated accurately from:

\[
f_{\text{rep}} = \frac{g_0 - (L + q_0)}{\Delta g \tau_f},
\]

where \(g_0\) is the steady-state single-pass fractional power gain, \(\tau_f\) is the fluorescence lifetime of the gain medium, \(L\) is the single-pass nonsaturable cavity loss, \(q_0\) is the single-pass small-signal loss of the saturable absorber, and \(\Delta g\) is the difference between the threshold gain \(g_{th}\) (\(g_{th}=L+q_0\)) and the final depleted gain \(g_f\). \(g_{th}\) is the minimum gain needed for the pulse to see a net gain in each round-trip. In our case, \(q_0=0.2\). Loss analysis of the cw laser showed that \(L\) is about 0.02. Therefore, we neglected \(L\) in relation to \(g_0\) in repetition-rate calculations. Also, the final depleted gain was assumed to be negligible, giving \(f_{\text{rep}} = (g_0 - q_0)/q_0 \tau_f\).

As can be seen from the preceding, \(f_{\text{rep}}\) depends on the steady-state single-pass gain \(g_0\), which is influenced by several parameters, including the stimulated emission cross section of the gain medium, fluorescence lifetime, pump power, and the degree of overlap between the pump and the laser modes. In the case of the resonator with the intracavity lens, as the lens is translated, the laser spot size distribution and hence the mode overlap between the pump and laser beams will vary. This affects the single-pass power gain \(g_0\). For a given pump and laser spot size distribution in the gain crystal, we can determine \(g_0\) by solving for the spatial evolution of the intracavity laser power. Neglecting saturation effects at the lasing wavelength, the power \(P^*_L\) of the forward-moving beam satisfies the differential equation\(^{12}\):

\[
\frac{1}{P^*_L} \frac{dP^*_L}{dz} = g_f \int_0^\infty dr 2\pi r \left[\frac{\Phi_f \Phi_p \exp(-\alpha_{g0} z)}{I_{sa}} \right] \left[1 + \frac{P_p \exp(-\alpha_{g0} z) \Phi_f}{I_{sa}} \right].
\]

Here, \(P_p\) is the incident pump power, \(I_{sa}\) is the absorption saturation intensity, \(\alpha_{g0}\) is the differential pump absorption coefficient, \(g_f\) is the maximum extractable small-signal gain coefficient, and \(\Phi_f\) and \(\Phi_p\) are the respective normalized Gaussian transverse intensity distributions for the laser and pump beams. Pump and laser spot size functions were determined from standard ABCD analysis. For each setting of the intracavity lens location, we determined the spot size distribution of the laser beam and calculated the single pass gain \(g_0\) from:

\[
g_0 = \frac{P^*_L(L_0) - P^*_L(0)}{P^*_P(0)}.\]

The corresponding repetition rate was then calculated from Eq. (1). The stimulated emission cross section \(\sigma_e\) and the waist location \(z_P\) of the pump were used as fitting parameters. Figure 5 shows the measured variation and the best-fit calculation for \(f_{\text{rep}}\) as a function of \(d_f\). (The fixed parameters of the calculation were: diode pump power=5.4 W, \(d_f=15.2\) cm, \(L_0=10\) mm, crystal refractive index =1.165, focal length of the lens=10 cm, reflectivity of the output coupler=97.9%, \(\omega_{g0}=287\) \(\mu\)m, \(M^2(\text{pump})=275\), fluo-
Sennaroglu, Cankaya, and Kurt: Repetition rate control in continuous-wave-pumped…

centrance lifetime=95 μs, and $\alpha_{g0}=221.36 \text{ m}^{-1}$.Very good agreement was obtained between theory and experiment for the best-fit values of 0.0016 m and $7.7 \times 10^{-15} \text{ cm}^{2}$ for z_{fp} and σ_{g}, respectively. This value of σ_{g} is in good agreement with what was previously determined from cw efficiency data in Ref. 12. We note in passing that the technique discussed here can also be used as an alternative method for the determination of the stimulated emission cross section of a solid-state laser material from the repetition-rate data when operated in cw-pumped, passively Q-switched mode.

Finally, we return to Fig. 3(c) to provide a qualitative explanation for the observed trend in the output power as a function of the intracavity lens position. If the residual gain after the passage of the pulse is negligible, the output pulse energy is approximately proportional to $g_{0}A_{eff}$, where A_{eff} is the effective mode area in the gain medium. Calculation of g_{0} was described earlier. By using the best-fit values for z_{fp} and σ_{g}, we find that g_{0} decreases from 0.62 to 0.44 as d_{l} is changed from 8.5 to 9.5 cm. However, at the same time, the average mode radius inside the gain medium increases from 229 to 323 μm, giving a larger mode area and resulting in the observed net increase in the output energy per pulse from 1.7 to 11.4 μJ.

4 Conclusions

We have discussed a technique for the adjustment and control of repetition rates in cw-pumped, passively Q-switched solid-state lasers. The method uses a movable intracavity lens to modify the mode matching and hence the gain of the laser beam per pass. The technique was applied to a diode-pumped Nd3+:YVO\textsubscript{4} laser passively Q-switched with a Cr4+:YAG saturable absorber at 1064 nm. At a fixed pump power of 5.4 W, we were able to continuously adjust the repetition rate between 13.8 and 25 kHz by translating an intracavity converging lens. We also demonstrated that the lens position can be adjusted to keep the repetition rate at a desired fixed value as the pump power changes. Finally, we used a rate-equation model to investigate how the repetition rate varies with lens position and obtained very good agreement between experimental results and theory. The technique discussed in this paper can be readily applied to the stabilization of the repetition rate by incorporating a closed-loop servo circuit. In the case of microchip passively Q-switched solid-state lasers, the gain crystal itself could be translated to vary the pump focusing, which affects the gain per pass and the repetition rate.

References

Alphan Sennaroglu is a professor of physics at Koç University, Istanbul, Turkey. He received his BS, MS, and PhD degrees in electrical engineering from Cornell University in 1988, 1990, and 1994, respectively. After joining Koç University in 1994, he established the Laser Research Laboratory. His research interests include solid-state lasers, ultrafast optics, spectroscopy of novel laser and amplifier media, and nonlinear optics. He was a visiting researcher at the Massachusetts Institute of Technology from 2002 to 2003 and in 2005 and 2006. He served as the program chair for the Solid-State Lasers and Amplifiers Conference held in 2004 and 2006 during the Photonics Europe meeting in Strasbourg, France. In 2005, he was elected an associate member to the Turkish Academy of Sciences (TUBA). He is a senior member of IEEE and a member of OSA, SPIE, and of Optics Committee of Turkey. In 1999, he founded the Leos Turkish Chapter of the IEEE Lasers and Electron-Optics Society and served as the chapter president between 1999 and 2003. He received the 2002 ICTP/ICO award, 2001 Werner-von-Siemens Award, 2001 TUBA Young Scientist Award, and 1998 Tubitak Young Scientist Award.

Huseyin Cankaya received his BS degree in physics from Koç University, Istanbul, Turkey, in 1994. In 2004, he entered the Materials Science and Engineering Program at Koç University, where he is currently working toward his MS degree. His research interests include infrared solid-state lasers and spectroscopy of laser materials.

Adnan Kurt received his BS (electrical engineering) and MS (physics) degrees from Boğaziçi University Istanbul, Turkey, in 1984 and 1987, respectively. From 1985 to 1990, he was a research assistant in the Departments of Physics and Psychology at Boğaziçi University and worked on laser speckle, pulsed gas laser design, neurocomputing, and animal learning. From 1990 to 1995, he joined the research group at the Center for Electroneurophysiology of Istanbul University Medical School and continued work in neurophysiology and human brain studies. He also worked for Mitra, Inc., and Teknofil, Ltd., in printing, imaging, electrophotography, and instrumentation control. In 1999, he joined the Department of Physics at Koç University as a research engineer. His current research interests include solid-state laser design, optical and electronic instrumentation, and laser spectroscopy.