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Abstract—Current Electronic CounterMeasure (ECM) sys-
tems process preprogrammed jamming techniques against radar
threats that are captured and identified by Electronic Sup-
port Measures (ESM) systems. On the other side, with recent
technologies, radar systems become adaptive and intelligent
systems that can change their waveforms. Nevertheless, on-going
studies in the radar domain have enabled cognition. However,
an ECM architecture is yet to be developed for automatically
generating effective countermeasures against new, unknown and
next-generation radars. To address this need, enabling a cognitive
control mechanism in the ECM system is a suitable solution. In
this paper, we present an architecture for Cognitive Electronic
CounterMeasure (CECM) system. This CECM system assesses
the most effective ECM technique against new, unknown and
adaptive or cognitive radars. Simulations reveal that CECM
system provides accurate mapping performance while providing
satisfying generalization for unknown emitters.

I. INTRODUCTION

Years ago, intruding vehicles passing through enemy area

were able to approach only under cover of darkness, fog or

rain. Radar technology made all efforts to camouflage the

intrusion ineffective.

Several methods are still being used to overcome radar

systems. One effective method is making the approach at low

altitudes with a very low detection profile. The other method

is reducing the reflected radar signal power. This method

is accomplished by using special techniques and absorbing

covering material to reduce the radar reflective area [1].

The last method to conceal the passing vehicle from enemy

radar is Electronic CounterMeasure (ECM). Any intentional

electronic attempt to confuse radar operation is generally

referred as an ECM technique. There are two types of ECM,

active and passive. Passive ECM methods involve radar ab-

sorbing material (RAM) and chaff, which is composed of

a large number of small RF reflectors that provide large

RCS. Active ECM systems are designed to inject disturbing,

interfering or deceptive signals to radar receiver circuitry to

prevent detection, locate and track protected vehicles [1].

To confuse enemy radar, a jamming signal can be a replica

of the true reflected signal with amplitude, phase or frequency

modulation. Fig. 1 shows a typical ECM system architecture.

This kind of system is capable of executing preprogrammed

ECM against different radars in various modes.

In Fig. 1, a receiver is included in the ECM system. This

receiver is used to detect, analyse and classify all receiving

signals to accurately determine which signals are associated

with which radar in which mode. Analysis must be supported

with angle of arrival information to successfully direct the

transmitted jamming signal to corresponding enemy radar.

Using an appropriate control mechanism on Digital RF Mem-

ory (DRFM) and the signal or noise source, various types of

jamming techniques can be applied on a pulse-to-pulse basis.

In addition, an amplitude/phase modulator is used to generate

deceptive modulation on an intercepted signal to confuse the

victim radar.

Current airborne Electronic Warfare (EW) systems must first

evaluate enemy radar from its received signals to accurately

assess the appropriate preprogrammed ECM technique. Espe-

cially in fighter jets and helicopters, there is no EW operator

on-board to select or change the appropriate technique in

operation. Therefore selection should be made by the system

itself.

The preprogrammed ECM approach becomes less and less

effective as radars evolve from fixed analogue systems to

programmable digital variants, especially when adaptive or

cognitive radars come to the battlefield. In the near future,

these types of radars will be capable of sensing the environ-

ment and adapting their transmissions to increase performance

and overcome jamming effects. Therefore, they will likely

present greater challenges for current ECM systems.

In [2], an adaptive closed loop control solution for ECM

systems was presented. In nature, ECM systems have to

operate under some uncertainties as radar type or exact radar

mode. Therefore, ECM systems mainly have to trust their

threat radar database. In [2], an adaptive controller with system

identification is proposed against tracking radar to overcome

uncertainties about the threat. However, this solution is limited

to certain ECM techniques against certain types of radar.

Moreover, each system identification process for each radar

should be independent; hence, an adaptive process must be

initialized from the beginning state.

The Defence Advanced Research Projects Agency (DARPA)

started a program called Adaptive Radar Countermeasure

(ARC). The goal of this program is to enable U.S. airborne EW

systems to automatically generate effective countermeasures

against new, unknown and adaptive radars in real-time with

minimum modification on current ECM systems in the field

[7].



Fig. 1. Traditional ECM Architecture

The system scenarios being used in ECM systems is limited

to fixed algorithms which may become obsolete in the near

future, if the number of cognitive radar systems grows in the

field. The ability to learn adapting to different situations must

be included in the future design of ECM systems.

In this paper, we introduce an architecture for a Cognitive

Electronic CounterMeasure (CECM) system. In our ECM

architecture, the ability of adapting to different situations of

the ECM system is achieved using cognitive capability. The

CECM system has a unique technique selection architecture

for unknown emitters using its generalization capability.

The remainder of the paper is organized as follows. En-

abling cognition mechanism is presented in Section II. In

Section III, we introduce the proposed cognitive structure and

explain the architecture of the CECM. In Section IV, we

present the performance evaluation and discuss the results.

Finally, we give concluding remarks and future work in

Section V.

II. ENABLING COGNITION

In this Section, we introduce an analogy between visual

brain and ECM structure to enable cognition mechanism.

According to “dictionary.com“, cognition is “the knowledge

that results from such an act or process“. The visual brain

is a cognitive machine which has a inherent capability to

accomplish certain missions as target tracking [6]. From an

ECM system perspective, the functions of five fundamental

building blocks in Fuster’s paradigm of cognition are described

below.

A. Perception−Action Cycle

The function of the perception-action cycle is to gather

information about the environment using the received signal

with the increasing information gain from one cycle to the

next [6].

The main principle of the ECM system is reacting to a

preprogrammed act according to the radar changing behaviour

as a closed loop system. One analog for this system is sensing

the RF environment via perception. Another is generating

jamming signal via action. Furthermore, ECM systems already

have a feedback mechanism between transmitter and receiver

side to track the threat radar signal.

B. Memory

Memory extracts the features of the received radar signal

to map the corresponding ECM technique. Memory stores the

encoded information in its weights and parameters, and then

recalls this information when needed. A Learning process is

performed in the memory.

C. Attention

The function of attention is to provide the effective and

efficient utilization of computational resources. When the

effectiveness of the countermeasure is low in a Perception-

Action Cycle (PAC), selecting the optimum technique from

the database requires an explore-exploit mechanism which

may require high computational complexity. To avoid that

complexity, a particular grid point in the ECM database is

selected to closely match the feedback information on the

preceding PAC. Therefore, the complexity enclosed in a global

search of the entire database is substituted with a local search

based on a small neighbour of grid points.

D. Intelligence

Intelligence empowers an algorithmic decision-making

mechanism in the cognitive systems to intentional selection

of a strategy for optimal solution of envisioned goal [6].

Specifically, enabling intelligence for optimal selection can

reach a desired technique in the ECM system. Intelligence

should be distributed throughout the ECM system.

E. Language

Finally, language is intended to provide effective and effi-

cient communication on a person-to-person basis as well as a

group of persons. However, we keep language out of scope of

the cognitive ECM structure.

III. COGNITIVE ELECTRONIC COUNTERMEASURE

(CECM) ARCHITECTURE

An analogy between visual brain and ECM structure guides

us to constitute a cognition enabled ECM structure to au-

tomatically generate effective countermeasures against new,

unknown and cognitive radars in the field. To detect, deceive,

and defeat enemy radar threats, current ECM systems must

rely on known emitter databases to characterize the threat and

determine the appropriate countermeasures response.

Cognition enables the ECM system to adaptively learn

to defeat all potential threats using the advances in signal

processing and machine learning to develop a system that

detects and counters emerging radar threats. With this new

technology, the Cognitive ECM system combines and trans-

mits a countermeasure signal to reach a desired effect on the
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Fig. 2. Cognitive ECM Architecture

threat radar. Using a cost function, it assesses the effectiveness

of countermeasures based on over-the-air observable threat

behaviours.

The CECM system consists of three fundamental parts:

The ECM Memory & Database is the first and vital part of

the CECM system; the second is Memory Training & Control;

the ECM Memory Driver is the third part and generates

feedback information required for optimization of the tech-

nique selection mechanism. After selecting a corresponding

technique using memory, the ECM generator is responsible

for the realization of the ECM technique vector. It consists

a various ECM components such as Digital RF Memory

(DRFM), AM & PM Modulator and Noise Source.

A. Feeding CECM System: Electronic SupportMeasures

(ESM)

Before selecting an effective countermeasure technique, the

CECM system requires accurate detection and identification

of threat emitter environment around the deployed platform.

This information can be provided by the ESM system.

The ESM System has three blocks to reach the required in-

formation in Fig. 2. First, important features of gathered radar

signals from the environment are extracted. These features

help the ESM system detect and identify threat, neutral and

unknown emitters. In the literature, different feature extraction

methods have been proposed over the years [9], [10], [11].

In CECM, the ESM system supplies the signal’s frequency,

pulse width (PW) and time of arrival (ToA) information

that packed in a pulse descriptive word (PDW). The Feature

Extractor block provides PDWs to the second block called

”feature clustering” or ”deinterleaving”. Using clustering al-

gorithms, the second block detects radar emitter existence

in the environment, then generates emitter detection reports

(EDR) which include specific parameters as maximum and

minimum frequency, PW, Pulse Repetition Interval (PRI),

Antenna Rotation Type (ART) and Antenna Rotation Period

(ARP). Finally, EDRs are used for emitter classification to

specify the threat level of the emitter and the type of radar

in the specific emitter identification block. Then, the threat

emitter list is generated to show EW operator.

B. ECM Memory & Database

This is the core and important part of the CECM system.

The mission is mapping the most effective countermeasures

from the ECM database to the known or unknown emitters.

At the input end of an ECM memory, there is EDR space,

and at the output end, the ECM technique library. This library

is composed of a grid of points with a layered structure.

Each layer represents a different ECM technique space with a

different combination of technique parameters, such as noise

bandwidth, modulation depth, time or frequency offset, start

or stop frequency, frequency step size or step visit duration.

These parameters utilize ECM technique effectiveness against

threat emitters.

To realize the ECM memory, a multilayer feed-forward

neural network with sigmoid hidden neurons and linear output

neurons is selected with two different structures as in Fig. 3.

These neural networks fit multi-dimensional mapping prob-

lems well with the given consistent data and enough neurons

in its hidden layers.

The idea behind this kind of neural network structure is

referred to as features of features. Using the learning process,

the first layer extracts the important features of the EDR. These

features act as the input to the second layer and continues to

extract the features of features of the original EDR.

The activation functions of neurons differ from layer to

layer. For the second, third and fourth hidden layers, the
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Fig. 3. Block Diagram of (a) Hybrid and (b) Multi-layer ECM Memory

activation functions are defined by the hyperbolic tangent

function,

ϕ(2) = ϕ(3) = ϕ(4) = tanh(ν) (1)

with ν as the input to a neuron in a particular layer. For the

output (fifth) layer, we use a linear activation function defined

by,

ϕ(5) = ν (2)

C. Memory Training & Control

We propose two different types of memory structures called

Hybrid and Multi-scale ECM Memory. The performance of

these structures will be presented in Section IV.

Hybrid memory is shaped as two different neural network

structures in Fig 3(a). The First is a replicator network,

which is a simple choice of implementing the multi-scale

memory [3]. Training of the replicator network is managed

in an unsupervised fashion using the Bayesian Regularization

Back-propagation algorithm in batch mode [4]. The Bayesian

Regularization method minimizes the combination of squared

errors and weights. This method also changes the linear

combination to reach a good generalization specification at

the end of training [12].

In the batch mode of unsupervised learning, adjustments to

the weights of each layer are calculated after using all the

examples in the training sample, which constitute one epoch

of training [3]. Further, the Bayesian Regularization algorithm

is selected to constitute the sufficient generalization of the

network. The Training Emitter Vector (TEV) is applied to both

the input layer and the output layer; hence, the emitter vector

also takes the role of a desired response.

The second part is in a combined structure. Incorporating

the encoder part of the replicator network and an additional

output layer builds the combinational neural network. Once

the training of replicator network is finished, the decoder part

is no longer used. All weights in the encoder part are fixed,

and then the hybrid network is trained under supervision of

the Mission Data File (MDF) in batch mode. Using the MDF,

TEVs and Training Technique Vectors (TTVs) are generated

and used for the Least Mean Square (LMS) algorithm in the

training process [3].

Multi-scale ECM memory is general type of multi-scale

neural network structure in Fig 3(b). Training of the multi-

scale network is managed using the LMS algorithm under

supervision of the MDF in batch mode [4].

Algorithmically, we use supervised training based on the

LMS algorithm, described as, [3]

ŵ(n+ 1) = ŵ(n) + ηx(n)e(n) (3)

where η is the learning-rate parameter and e(n) is the error

signal, defined by,

e(n) = d(n)− xT (n)ŵ(n) (4)

where d(n) is the teacher signal and x(n) is the input to the

encoder in the replicator network.

It is important that the learning-rate parameter η behave as

a measure of the memory in the LMS algorithm. The smaller

η, the longer the memory span over which the LMS algorithm

remembers past data will be. Therefore, when η is small, the



LMS algorithm performs accurately, however the convergence

rate of the algorithm is slow [3].

After finding the best technique vector, which might not be

the same as in the MDF, on-line adaptation is required for the

ECM memory. In the on-line mode of supervised learning,

adjustments to the weights of each layer are performed on an

example-by-example basis.

D. ECM Memory Driver

The driver extracts the ECM effectiveness information from

the received radar signal behaviour. The first method is jog

detection. Jog detection involves measuring the radar received

power at the tracked platform, and searches for dips or jogs

that happen when the radar antenna points away from the

CECM deployed platform.

Jog detection is almost as old as tracking radars. However,

multipath is a serious problem when searching jogs in the

received signal, because signal power variations caused by

multipath can be confused with jogs caused by the angle

deception ECM. Several methods provide multipath and jog

discrimination. In [8], an ECM system with two vertically

separated antenna is proposed and detailed. Using the spatial

diversity technique, the proposed system reliably detects jogs

caused by the ECM system.

Although jog detection is used as an ECM effectiveness

assessment metric, in our solution this phenomena drives our

ECM memory as a bias vector to reach the most effective

ECM technique parameters over the ECM Database.

Another mechanism to determine the success of the ECM

signal is calculating of Jamming to Signal Ratio (JSR). De-

pending on the jamming type, emitter signal behaviour and

distance to threat emitter, the JSR calculation gives an a priori

information about the effectiveness of the ECM operation. In

the ECM database, JSR is used as a cost function to find an

optimal point over the ECM technique space for each PAC

cycle.

IV. CECM PERFORMANCE EVALUATION

In this section, we present simulation results evaluating the

performance of CECM architecture.

For the hybrid ECM memory, the replicator network is

composed of an input layer of source nodes, three hidden

layers, and an output layer, whose sizes are 8, 10, 5, 10, and

8, respectively. We call this structure the CECM-hybrid. The

weights of the replicator network were initialized as uniformly

distributed small numbers on the interval of (0.125, 0.125).
The learning rate was linearly assigned on the region of

[10−1, 10−5]. To train the replicator network, 20 different

emitters and 200 training data sets for each were selected.

The number of epoch was set as 300.

The training data set in Fig. 4 was selected from land

and air radar emitters which can classified as a threat for

a helicopter platform. Then, the real emitter parameters are

slightly modified, hence the parameters are restricted.

After training the replicator network, an additional output

layer of size 3 was connected to the encoder. The hybrid
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network size becomes 8, 10, 5 and 3. The Bayesian regulariza-

tion algorithm was adopted to train the weights between the

encoder and this new output layer. Furthermore, the number

of epoch was also set as 300. To train the hybrid network,

the same training data sets were selected. The only exception

is that this data set contains technique training vectors, which

are mapped to each emitter vector. For the technique space,

5 different ECM techniques were used with a 100x100 wide

parameter space.

For the multi-layer ECM memory, the network is composed

of an input layer of source nodes, three hidden layers, and an

output layer, whose sizes are 8, 10, 5, 10, and 3, respectively.

We call this structure CECM-3. The weights of the multi-

layer network were initialized as uniformly distributed small

numbers on the interval of (0.125, 0.125). To train the multi-

layer network, the same training data sets were selected and

the number of epoch was set as 300.

Finally, we evaluated these two network structure with

respect to single hidden layered neural network. The single

hidden layer network sizes are 8, 10 and 3. We call this

structure as CECM-1.

The early stop mechanism is used in the simulations to avoid

over-training. If the network training of mse performance

decreased below 10−2 or the process reached 300 epochs, the

operation was terminated immediately.

A. Error Performance

After training, test vectors are used to evaluate the per-

formance of the training process. Fig. 5 illustrates the error

histogram of CECM-3. The less deviated histogram around

zero error indicates a successful training process. Before the

training operation, data sets were separated and supplied to

the network for train, validation and test purposes with 70%,

15% and 15% respectively. For all sets, error behaviour shows

same performance and small amount of instances reach only

maximum 2% error.
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B. Generalization Performance

Generalization performance directly reflects the CECM re-

sponse to unknown emitters. In other words, a more gener-

alized network represents a selection of a more proper ECM

technique to unknown emitters.

Fig. 6 displays the generalization performance of different

CECM structures as CECM-1, CECM-3 and CECM-hybrid.

Generalization performance is evaluated over a mean square

error (mse) calculation between target and output vector under

different disturbance values,

mse =
1

N

N∑

i=1

(ei)
2 (5)

where ei is the error between target and output vector.

Although the CECM-hybrid has the best mse error at zero

disturbance, it becomes worst when disturbance increases.

CECM-3 has the best generalization performance; hence, it

displays almost the same performance under changing distur-

bance values.

V. CONCLUSIONS AND FUTURE WORK

The system scenarios being used in current ECM systems

are limited to fixed algorithms which may become obsolete at

near future if the number of cognitive radar systems grow

in the field. These radars will be capable of sensing the

environment and adapting their transmissions to increased

performance and overcome interference effects. Therefore,

there is an urgent need for a new type of ECM system to

overcome the challenges comes from future radars.

Our simulations reveal that CECM with multi-scale memory

is a great candidate for next generation ECM systems. Espe-

cially, generalization performance indicates that CECM-3 has

the best technique selection architecture for unknown emitters

which can be classified as threat radar.
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For more real evaluations, CECM assessment with real radar

and missile parameters using Tactical Engagement Simulation

Software (TESS) [13] and software implementation of the

CECM system in a real-time operating system are left as future

work.
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