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We show that the spontaneous scalarization scenario in scalar-tensor theories is a specific case of a more
general phenomenon. The key fact is that the instability causing the spontaneous growth in scalars is due to
the nonminimal coupling in the theory, and not related to the nature of the scalar. Another field with the
same form of coupling undergoes spontaneous growth as well. We explicitly demonstrate this idea for
vectors, naming it “spontaneous vectorization”, and study spherically symmetric neutron stars in such a
theory. We also comment on other tensor fields the idea can be applied, naming the general mechanism
“spontaneous tensorization.”
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I. INTRODUCTION

Spontaneous scalarization is known as a phenomenon in
certain scalar-tensor theories where the scalar field vacuum
is unstable near neutron stars (NSs), meaning arbitrary
perturbations from vacuum would grow to a stable nonzero
scalar field cloud [1]. These scalar fields die off away from
the star, hence the theory passes the weak-field tests [2].
More intriguingly, the modifications to general relativity
(GR) near the star is order-of-unity, leading to potentially
large observable signatures in the strong-field regime [1–4].
The origin of spontaneous scalarization can be traced to a

long wavelength tachyon instability in the presence of
matter as we will discuss in more detail [5]. The main point
of this paper is that this tachyon instability is due to the
form of the nonminimal coupling term in the action of the
theory, and the scalar nature of the field is not important.
This suggests that any field with a similar coupling likely
presents the same instability, and spontaneously grows.
Hence, we name this more general phenomenon sponta-
neous tensorization.
Replacing the scalar field in the scalar-tensor theory

with a vector field is a natural first step in generalizing
spontaneous growth, and we investigate such a theory in
some detail. We indeed observe the vector field vacuum to
be unstable when matter exists in the spacetime, and study
the properties of spontaneously vectorized NSs. There are
various alternative theories of gravity that involve vector
fields [6–13]. There are also various scenarios in particle
physics that predict the existence of hitherto undetected
vector or pseudo-vector particles, especially those with
ultralight masses that we are interested [14–17]. The most
relevant cases to our discussion in the literature are those
with screening fields [13].
Our main result is a new category of gravity theories that

feature spontaneously growing tensor fields of different
kinds with a common functional form for their nonmini-
mal matter coupling. We emphasize that the study of a
spontaneously growing vector field for which we spend

considerable space below acts as a demonstration of this
idea, and is not the central theme itself. We expect all these
theories to share the appeal of spontaneous scalarization in
terms of passing weak-field tests while providing order-of-
unity deviations from GR in the strong field. This aspect is
of central importance in the age of gravitational wave
science [18] since they make contact with observations
considerably easier.

II. THE ORIGIN OF SPONTANEOUS
SCALARIZATION

Spontaneous scalarization is the prototypical example of
spontaneous tensorization and we start with explaining its
physical mechanism. We follow [5] where a more detailed
discussion can be found. The action for a scalar-tensor
theory in the so-called Einstein frame is given by [1]
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þSm½ψm;A2ðϕÞgμν� ð1Þ

where gμν is the metric, ϕ is the scalar field and mϕ is the
parameter coupling to the mass potential. Sm is the matter
action, where ψm denote the matter degrees of freedom.
The first line of the action is simply a massive scalar field
living in GR, hence does not constitute an alternative
theory of gravity. However, ψm couple to a conformally
scaled version of the metric, ~gμν ¼ A2ðϕÞgμν, and this
nonminimal coupling differentiates this theory from GR.
The scaled metric ~gμν defines the so-called Jordan frame,
and is the metric physical observers directly interact with.
Variables defined according to this frame are symbolized
using tildes to distinguish them from those in the Einstein
frame which are bare.
Let us consider the case AðϕÞ ¼ eβϕ

2=2 where β is a
constant. It is easy to see that ϕ ¼ 0 is a solution of the
theory (equivalent to GR), but surprisingly it is not
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guaranteed to be stable in the presence of NSs. Any small
perturbation from zero grows and finally leads to a stable
configuration with ϕ ≠ 0. This is called spontaneous
scalarization. The underlying reason for the spontaneous
growth becomes clear when we write the linearized
equation of motion (EOM) for small values of ϕ

□gϕ ¼
�
−8πA4

dðlnAðϕÞÞ
dðϕ2Þ

~T þm2
ϕ

�
ϕ

≈ ð−4πβ ~T þm2
ϕÞϕ ¼ −μ2ϕϕ ð2Þ

where ~T is the trace of the matter stress-energy tensor in the
Jordan frame. For a perfect fluid, ~T ¼ −~ρþ 3 ~p, where ~ρ
and ~p are the rest-frame density and pressure of the fluid
respectively. If the fluid is not strongly relativistic, ~ρ ≫ ~p
and ~T ≈ −~ρ < 0. The choice β < 0 leads to real μϕ for
small enough mϕ, which makes Eq. (2) a massive scalar
with the “wrong” sign for the mass square term: a tachyon.
This means all Fourier modes of ϕ with wavelength
λ≳ 1=μϕ and which also fit within the region where the
EOM is tachyonic grow exponentially in amplitude rather
than oscillate. This is eventually regulated by the nonlinear
terms we ignored, and lead to a finite stable scalar field
configuration. Even though we explained the physics using
the linearized equations fully nonlinear calculations show
that this scenario is realized for compact stars [1,5].
Even though we used a specific form of AðϕÞ, any

function with similar next-to-leading quadratic dependence
on ϕ gives qualitatively the same results, hence sponta-
neous growth is generic for a wide class of nonminimal
couplings [1]. We should add that the original calculation
used mϕ ¼ 0. Indeed, this term actually inhibits sponta-
neous growth. However, a nonzero term is needed for
agreement with recent binary star observations [5,19].
In short, spontaneous growth depends on two main

conditions:
(a) R.H.S of Eq. (2) should have a negative coefficient in

some part of spacetime for a tachyonic degree of
freedom,

(ii) The part of spacetime where the EOM is tachyonic
should be large enough to contain a wavelength of the
tachyon λ ∼ 1=μϕ

These conditions are realized for NSs for order-of-
unity values of jβj. Order of magnitude calculations show
that NSs scalarize for β ≲ −3, and scalarization strengthens
as β becomes more negative. For mϕ, the lowest limit is
imposed by having no observable effect in relatively close
binary systems [19] and the upper limit is due to the
constraint that the EOM for the scalar, Eq. (2), should be
tachyonic. Overall, this gives the bounds 10−9 eV≳
mϕ ≫ 10−16 eV.
To summarize, the spontaneous growth of a scalar in a

scalar-tensor theory depends on a tachyonic EOM which is
a result of the conformal scaling having the expansion

AðϕÞ ≈ 1 − jβjϕ2 þ � � �.1 This observation is the key to
generalize spontaneous growth to other nonminimally
coupled tensors. Namely, if we replace the scalar with
another tensor field, an “inverse parabola” dependence on
the tensor field in the conformal factor leads to a tachyonic
EOM where ~T is not zero.

III. SPONTANEOUS VECTORIZATION

Let us replace the scalar in Eq. (1) with a massive vector
Xμ to obtain a vector-tensor theory action
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where Fμν ¼ ∇μXν −∇νXμ, and the matter terms are
analogous to Eq. (1). We define the Jordan frame metric
~gμν ¼ A2

Xgμν, and all variables in this frame are again
denoted with a tilde. Since spontaneous vectorization has
not been studied before, its observational signatures are not
known, including the mX ¼ 0 case. However, our expect-
ation is that mX ¼ 0 is not likely to satisfy current
observational limits possibly aside from a marginal part
of the parameter space, similar to the case of the massless
scalar. Hence, we consider massive fields. However, we
will see in the EOMs that the mX term antagonizes
tachyonic behavior, i.e. it is actually easier to have a
tachyon without it. Thus, our results can be easily adapted
to massless vectors as in the case of the scalars [5].
The crucial part of the action is again the nonminimal

coupling due to the conformal scaling A2
XðηÞ, in direct

analogy to spontaneous scalarization. EOMs are

Rμν ¼ 8π

�
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1

2
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ρ
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2
FρσFρσgμν þ 2m2

XXμXν

∇ρFρμ ¼ ð−8πA4
XΛ ~T þm2

XÞXμ ð4Þ

where ΛðηÞ ¼ dðlnAXðηÞÞ=dðηÞ and Tμν is the stress-
energy tensor in the Einstein frame which is related to
its counterpart in the Jordan frame through

Tμν ≡ −2ffiffiffiffiffiffi−gp δSM
δgμν

¼ A2
X
~Tμν − 2ΛA4

X
~TXμXν: ð5Þ

Also note that Eq. (4) implies the constraint

1Relativistic matter can satisfy ~T > 0 in which case β > 0 can
also lead to a tachyonic equation [20]. We will only discuss the
β < 0 case, but all our results can be easily adapted to this part of
the parameter space.
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ð−8πA4
XΛ ~T þm2

XÞ∇μXμ ¼ Xμ∇μð−8πA4
XΛ ~TÞ: ð6Þ

EOM for X is that of a massive vector with negative mass
square when

8πA4
XΛ ~T > m2

X: ð7Þ
Hence, we expect the X ¼ 0 solution to be unstable and
vector fields to spontaneously grow around NSs similar to
the case of the scalar. We will restrict ourselves to AXðηÞ ¼
eβXη=2 with constant βX in the following analysis, but we
expect any function with a similar behavior to lead to
spontaneous growth as explained in Sec. II. With this
restriction all possible vector-tensor theories are specified
by the two parameters βX and mX. For the typical case of
~T < 0 this means βX < 0 of large enough absolute values
gives rise to a tachyon, signaling spontaneous growth of X.
Equation (3) has been studied in the literature in a

cosmological context, emphasizing the screening effect of
the mX term [13]. We are mainly concerned with the study
of compact objects and strong-field effects in this paper.
Mass of the vector field is a secondary concern for us
compared to the existence of spontaneous growth due to a
tachyonic instability. Moreover, we should re-emphasize
that the central idea of the paper is the generalization of
spontaneous scalarization to other tensors, of which the
vector case is a specific example.
As a concrete example, we examine the EOM for the

spacetime of a static, spherically symmetric star with the
metric ansatz

gμνdxμdxν ¼ −eνðrÞdt2 þ dr2

1 − 2μðrÞ=rþ r2dΩ2; ð8Þ

and the fluid stress energy tensor

~Tμν ¼ ð~ρþ ~pÞ ~uμ ~uν þ ~p~gμν; ~∇μTμν ¼ 0 ð9Þ
where the energy density ~ρ, pressure ~p, and components of
the fluid 4-velocity ~uα only depend on the radial coordinate
r. In the absence of any matter, spontaneous vectorization is
identical to a Proca field in general relativity, where the
only nonvanishing component of the vector field for a
static, spherically symmetric spacetime is X0 [21,22]. We
will consider the excitation of this component alone, which
bears many mathematical similarities to spontaneous sca-
larization [5]. However other components, e.g. Xr, might
also be present in the most general case since the potential
term for X is not exactly that of a Proca field. It is
convenient to define new variables Φ ¼ −nμXμ ¼
−e−ν=2X0 and E ¼ ðδμr þ nμnrÞFμνnν ¼ e−ν=2∂rX0, where
nμ ¼ ð−eν=2; 0; 0; 0Þ is the normal vector to the spatial
hypersurfaces. Under these assumptions, Eqs. (4) and (9)
reduce to a modified version of the Tolman-Oppenheimer-
Volkoff equations:

μ0 ¼ r2
�
4πA4

X ~ρ − 8πA4
XΛð−~ρþ 3 ~pÞΦ2

þ 1

2

�
1 −

2μ

r

�
E2 þ 1

2
m2

XΦ2

�

ν0 ¼ r2

r − 2μ

�
8πA4

X ~p −
�
1 −

2μ

r

�
E2 þm2

XΦ2 þ 2μ

r3

�

Φ0 ¼ −
ν0

2
Φ − E

E0 ¼ 1

r − 2μ
f½−2þ 3μ=rþ μ0�E

− ½m2
X − 8πA4

XΛð−~ρþ 3 ~pÞ�rΦg
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where 0 is the r derivative. The system is closed by the
equation of state (EOS) of the NS matter ~ρð ~pÞ.

IV. SPONTANEOUSLY VECTORIZED
NEUTRON STARS

In this section we discuss the properties of vectorized
NSs for various points on the βX −mX parameter space. All
past studies on spontaneous scalarization in principle can
be repeated for vectorization, leading to many research
paths. Here, we limit our investigation to only the most
basic aspects of spontaneous vectorization.
Equation (10) can be numerically solved to find isolated,

nonrotating, vectorized NSs using basic numerical tech-
niques detailed in [5]. We expect these solutions to be the
end states of spontaneously growing vector fields.
Vectorization depends on the equation of state of the NS
matter, and we detail the results for the intermediately stiff
“HB EOS” as defined in [23]. Vectorization qualitatively
behaves the same way for stiffer and softer equations in
[23] as well. We use AXðΦðr ¼ 0ÞÞ − 1≡ A0 − 1, as a
measure of the strength of vectorization, which also
quantifies the magnitude of deviations from GR. The
solutions we present are tested by the convergence of
the Hamiltonian constraint to zero as the grid resolution is
increased in a three dimensional initial data solver [24].
Vectorization of NSs as a function of their Arnowitt-

Deser-Misner (ADM) mass, MADM, for various values of
βX and mX can be seen in Fig. 1. Vectorization does not
occur for βX ≳ −2, and gets weaker with increasing jβXj for
βX < −4, whereas spontaneous scalarization gets stronger
for highly negative β values [5]. This is possibly related
to the fact that AX > 1 for vectorization (η ¼ XμXμ ¼
−Φ2 < 0) while A < 1 for scalarization, but this point calls
for further investigation.
MADM − ðA0 − 1Þ graphs become qualitatively different

as mX changes for a given βX, but there is not a clear
relationship in terms of the strength of the vector field. This
is also different from spontaneous scalarization where the
scalar field monotonously becomes weaker with increasing
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mϕ [5]. Overall, relationship between MADM and the
spontaneously growing field seems to be more complex
for vectorization compared to scalarization.
We believe at least part of this complexity in Fig. 1. to be

misleading. Even though all points in the figure represent
solutions to Eq. (10), their stability to small perturbations
are not guaranteed. We suspect many of the solutions to be
unstable based on our experience with spontaneously
scalarized stars [5]. For some stars Φ or ρ are not
monotonously decreasing with radius (nonsolid lines in
Fig. 1.), and in general we expect only a single solution to
be stable for a given MADM value. If these expectations are
true, then it is likely that vectorization monotonically gets
weaker with increasingmX. However, a complete answer to
the stability question of the solutions we found require
numerical time evolution of these stars which is left for
future work.
Allowed field mass values are estimated similarly for

spontaneous scalarization and vectorization. The vector
field dies off exponentially away from the star with a decay
length of 1=mX. Thus the lower bound to mX comes from
the lack of observational signatures of modifications to GR
in binary systems, mX ≫ 10−16 eV [5,19]. The upper
bound criterion for mX is having a tachyon in the EOM
of the vector field in Eq. (4), which translates to
10−9 eV≳mX. We should note that spontaneous vectori-
zation seems to continue to be effective at somewhat higher
field masses compared to spontaneous scalarization, but an
exact verdict depends on the stability of the vectorized NSs
at these high mX values.

Density profiles of various vectorized stars we expect to
be stable can be seen in Fig. 2. There is significant
deviation from the predictions of GR, but unlike sponta-
neous scalarization the central density is less than what one
would have in GR. This is again possibly due to the fact
that AX > 1 for vectorization. Despite significant changes
in the density profiles, the radii or baryon masses of the
stars did not change appreciably from the values in GR, in
contrast to spontaneous scalarization [5].
Signs of spontaneous vectorization are easily distinguish-

able in astrophysical observables thanks to the nonperturba-
tive nature of the deviations from GR. We expect compact
object binaries containing a vectorized star to have signifi-
cantly different evolution near the merger. Another possible
observable signature of spontaneous vectorization is dynami-
cal vectorization,where aweakly vectorizedNS significantly
increases its vector field upon the influence of an approach-
ing strongly vectorized NS [25]. Observations of isolated
NSs can also be useful in constraining spontaneous vecto-
rization parameter space [26]. Lastly, spontaneous scalariza-
tion has also been recently investigated for collapsing stars,
which is another avenue of research for vectorization [27].

V. CONCLUSIONS AND FUTURE WORK

In this study, we show that spontaneous scalarization is a
specific case of a more general phenomenon that arises in
gravity theories with a nonminimal coupling to matter. The
key fact in generalizing spontaneous scalarization is that
the growth of the scalar field is due to the form of the
nonminimal coupling terms and not due to the nature of the
field itself. Other fields with similar nonminimal coupling
terms can easily be shown to have the same tachyonic

FIG. 1. Effect of varying mX and βX on the strength of
vectorization, i.e. A0 − 1 vs M=M⊙ plots. Upper row:
mX¼1.6×10−11eV, middle row: mX ¼ 8.0 × 10−12, lower row:
mX ¼ 4.8 × 10−12 eV, left column: βX ¼ −4, middle column:
βX ¼ −5, right column: βX ¼ −6. Dashed and dot-dashed lines
indicate solution where ~ρ or Φ does not monotonically decrease
with radius, respectively. We also suspect some of the mono-
tonically decreasing solutions (solid lines) to be unstable.

FIG. 2. Changes in NS structure with spontaneous vectorization
for various stars with MADM ¼ 1.35 M⊙. Left: Effect of varying
βX for mX ¼ 1.6 × 10−13 eV. Right: Effect of varying mX for
βX ¼ −4.
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behavior as the spontaneously growing scalars which leads
to growth. Hence, classifying spontaneous scalarization as
a specific case of spontaneous tensorization illuminates the
underlying physics better than describing it as an unex-
pected phenomena in certain scalar-tensor theories.
The most straightforward generalization of spontaneous

scalarization is replacing the scalar with a vector: sponta-
neous vectorization.We derived the EOMs for such a theory,
and used them to construct spontaneously vectorized NSs.
We showed that spontaneous vectorization can lead to order-
of-unity changes in NS structure which strongly indicates
prominent observable signatures in compact object mergers,
and possibly isolated NSs. Consequently, observations of
strong-field gravity can confirm or rule out this nonmini-
mally coupled theory with relative ease. Spontaneous
vectorization of isolated spherically symmetric NSs is
somewhat more complex than the case of spontaneous
scalarization, and a complete understanding of their stability
will require numerical time evolution [28].
We can devise a “recipe” for a theory of spontaneous

growth of any given field ξwith an action similar to Eq. (1).
The conformal factor should be schematically in the form
AξðξÞ ¼ 1þ βξξ

2 þ � � �, in which case βξ with the “correct”
sign leads to a tachyonic EOM, hence spontaneous growth.
For example, spontaneous growth readily generalizes to
complex scalars and vectors. There is also an example of
this mechanism for a 3-form field which utilizes the very
close relationship between 3-forms and vectors in four-
dimensional spacetimes [29].
The recipe we provide may require special care for the

next case in the tensor hierarchy, a rank-2 tensor. Gravity
theories with two interacting spin-2 fields, especially when
the fields are massive, have been notoriously hard to
approach [30]. For example, choosing a scalar analog of

η ¼ XμXμ for rank-2 tensors which can act as the argument
of Aξ is a subtle issue [30]. Despite historical problems,
there has been recent breakthroughs in theories of massive
rank-2 tensors in terms of massive gravity and bigravity,
and we are now able to build anomaly-free theories of
interacting rank-2 tensors [30]. We aim to use such theories
as starting points to formulate spontaneous growth for rank-
2 tensors while taking care of known issues in extending
massive gravity theories [31]. Spontaneous growth of
spinor fields is another avenue to investigate.
Spontaneous scalarization has been a viable theory of

gravity for more than two decades, and its promise of
nonperturbative deviations from GR at the strong-field
regime has made it even more appealing at the age of
gravitational wave observations. We expect generic sponta-
neous tensorization theories to share these important traits
with scalarization, and open new possibilities in strong
gravity research.
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